Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (7): 72-82    DOI: 10.13523/j.cb.20160711
    
Engineering Strategies for Improved the Oxytetracycline Production in Streptomyces rimosus
YIN Shou-liang1, LIN Zhi-wei1, ZHANG Yu-xiu1, WANG Wei-shan2, SHI Ming-xin2, YANG Ke-qian2
1 Department of Environmental and Biological Engineering, School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
2 State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
Download: HTML   PDF(1021KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Oxytetracycline (OTC) is a broad-spectrum antibiotic produced by Streptomyces rimosus. OtcR was confirmed to be the pathway-specific activator of OTC biosynthesis to directly activate the oxy (oxytetracycline) cluster. OTC production was significantly improved by overexpression of OtcR under the strong promoters. Overexpression of OtcR increased OTC production dramatically by 4 times compared to the parental strain S. rimosus M4018. For a further improvement of the OTC production, the intracellular pool of malonyl-CoA by overexpressing acetyl-CoA carboxylase in M4018 were increased. Herein, for the OTC production, that by overexpressing both the pathway-specific activator OtcR and acetyl-CoA carboxylase in S. rimosus had been shown, a maximum of 9.09g/L was achieved in recombination strains, while only 1.37g/L in the wild type strain M4018.The work has an important significance for engineering industrial strains to improve OTC production.



Key wordsStreptomyces rimosus      Engineering      Pathway-specific activator OtcR acetyl-CoA carboxylase      Oxytetracycline     
Received: 19 April 2016      Published: 25 July 2016
ZTFLH:  Q81  
  Q78  
  Q93  
Cite this article:

YIN Shou-liang, LIN Zhi-wei, ZHANG Yu-xiu, WANG Wei-shan, SHI Ming-xin, YANG Ke-qian. Engineering Strategies for Improved the Oxytetracycline Production in Streptomyces rimosus. China Biotechnology, 2016, 36(7): 72-82.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160711     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I7/72

[1] 李寅.代谢工程:一项不断发展的菌株改造技术.生物工程学报,2009,25(9):1281-1284.Li Y.Metabolic engineering:an evolving technology for strain improvement.Chinese Journal of Biotechnology,2009,25(9):1281-1284.
[2] 张红岩,辛雪娟,申乃坤,等.代谢工程技术及其在微生物育种的应用.生物技术通报,2012,39(4):17-21.Zhang H Y,Xin X J,Sheng N K,et al.Application of metabolic engineering in strain breeding industrial microbe.Biotechnology Bulletin,2012,39(4):17-21.
[3] 李寅,曹竹安.微生物代谢工程:绘制细胞工厂的蓝图.化工学报,2004,55(10):1573-1580.Li Y,Cao Z A.Microbial metabolic engineering:gateway to develop blueprints for cell factories.Journal of Chemical Industry and Engineering (China),2004,55(10):1573-1580.
[4] Liu G,Chater K F,Chandra G,et al.Molecular regulation of antibiotic biosynthesis in Streptomyces.Microbiol Mol Biol Rev,2013,77(1):112-143.
[5] Takano E,Gramajo H C,Strauch E,et al.Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2).Mol Microbiol,1992,6(19):2797-2804.
[6] Fujii T,Gramajo H C,Takano E,et al.redD and actⅡ-ORF4,pathway-specific regulatory genes for antibiotic production in Streptomyces coelicolor A3(2),are transcribed in vitro by an RNA polymerase holoenzyme containing sigma hrdD.J Bacteriol,1996,178(11):3402-3405.
[7] Jnawali H N,Lee H C,Sohng J K.Enhancement of clavulanic acid production by expressing regulatory genes in gap gene deletion mutant of Streptomyces clavuligerus NRRL3585.J Microbiol Biotechnol,2010,20(1):146-152.
[8] Guo D,Zhao Y,Yang K.Coordination of glycerol utilization and clavulanic acid biosynthesis to improve clavulanic acid production in Streptomyces clavuligerus.Sci China Life Sci,2013,56(7):591-600.
[9] Butler M J,Bruheim P,Jovetic S,et al.Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans.Appl Environ Microbiol,2002,68(10):4731-4739.
[10] Tang Z,Xiao C,Zhuang Y,et al.Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway.Enzyme Microb Technol,2011,49(1):17-24.
[11] 廖瑜玲,刘志勇,唐振宇,等.龟裂链霉菌zwf2基因敲入及阻断对土霉素合成的影响.食品与药品,2009,11(1):7-10.Liao Y L,Liu Z Y,Tang Z Y,et al.Disruption of zwf2 gene to improve oxytetraclyline biosynthesis in Streptomyces rimosus M4018.Food and Drug,2009,11(1):7-10.
[12] 尹守亮,常亚婧,邓苏萍,等.以病原菌群体感应系统为靶标的新型抗菌药物的研究进展.药学学报,2011,46(6):613-621.Yin S L,Chang Y J,Deng S P,et al.Research progress of new antibacterial drugs that target bacterial quorum sensing systems.Acta Pharmaceutica Sinica,2011,46(6):613-621.
[13] Pickens L B,Tang Y.Oxytetracycline biosynthesis.J Biol Chem,2010,285(36):27509-27515.
[14] Yu L,Cao N,Wang L,et al.Oxytetracycline biosynthesis improvement in Streptomyces rimosus following duplication of minimal PKS genes.Enzyme Microb Technol,2012,50(6):318-324.
[15] Chu X,Zhen Z,Tang Z.Introduction of extra copy of oxytetracycline resistance gene otrB enhances the biosynthesis of oxytetracycline in Streptomyces rimosus.Journal of Bioprocessing&Biotechniques,2012,2(3):1-4.
[16] Kieser T BM,Buttner M J,Chater K F,et al.Practical Streptomyces Genetics.2nd ed.Norwich,UK:The John Innes Foundation,2000:289-295.
[17] Yin S,Wang W,Wang X,et al.Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus.Microb Cell Fact,2015,14(46):1-12.
[18] 齐广辉,杨俊青,田莉瑛,等.几种诱变因子对龟裂链霉菌的诱变效果.河北师范大学学报(自然科学版),2013,37(4):402-409.Qi G H,Yang J Q,Tian L Y,et al.Mutagenic effects of several mutagenic factors on Streptomyces rimosus.Journal of Hebei Normal University (Nature Science Edition),2013,37(4):402-409.
[19] Wang W,Li X,Wang J,et al.An engineered strong promoter for Streptomycetes.Appl Environ Microbiol,2013,79(14):4484-4492.
[20] Peyraud R,Kiefer P,Christen P,et al.Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics.Proc Natl Acad Sci USA,2009,106(12):4846-4851.
[21] Zhao Y,Xiang S,Dai X,et al.A simplified diphenylamine colorimetric method for growth quantification.Appl Microbiol Biotechnol,2013,97(11):5069-5077.
[22] Mizuno T,Tanaka I.Structure of the DNA-binding domain of the OmpR family of response regulators.Mol Microbiol,1997,24(3):665-667.
[23] Martinez-Hackert E,Stock A M.The DNA-binding domain of OmpR:crystal structures of a winged helix transcription factor.Structure,1997,5(1):109-124.
[24] Tsung K,Brissette R E,Inouye M.Identification of the DNA-binding domain of the OmpR protein required for transcriptional activation of the ompF and ompC genes of Escherichia coli by in vivo DNA footprinting.J Biol Chem,1989,264(17):10104-10109.
[25] Chen Y,Wendt-Pienkowski E,Shen B.Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts.J Bacteriol,2008,190(16):5587-5596.
[26] Tanaka A,Takano Y,Ohnishi Y,et al.AfsR recruits RNA polymerase to the afsS promoter:a model for transcriptional activation by SARPs.J Mol Biol,2007,369(2):322-333.
[27] Bibb M J,Janssen G R,Ward J M.Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus.Gene,1985,38(1):215-226.
[28] Labes G,Bibb M,Wohlleben W.Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn 1696 as reporter.Microbiology,1997,143(5)1503-1512.
[29] Pethick F E,Macfadyen A C,Tang Z,et al.Draft Genome Sequence of the Oxytetracycline-Producing Bacterium Streptomyces rimosus ATCC 10970.Genome Announc,2013,1(2):e0006313.
[30] Rodriguez E,Banchio C,Diacovich L,et al.Role of an essential acyl coenzyme A carboxylase in the primary and secondary metabolism of Streptomyces coelicolor A3(2).Appl Environ Microbiol,2001,67(9):4166-4176.
[31] Cardenas J,Da Silva N A.Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.Metab Eng,2016,36(07):80-89.
[32] Zabala D,Brana A F,Salas J A,et al.Increasing antibiotic production yields by favoring the biosynthesis of precursor metabolites glucose-1-phosphate and/or malonyl-CoA in Streptomyces producer strains.J Antibiot (Tokyo),2015,10(1):1-4.
[33] 尹守亮,张玉秀,张琪,等.无机磷酸盐对链霉菌合成次级代谢产物的影响.中国生物工程杂志,2015,35(9):105-113.Yin S L,Zhang Y X,Zhang Q,et al.The effect of inorganic phosphate on the biosynthesis of secondary metabolites in Streptomyces.China Biotechnology,2015,35(9):105-113.
[34] Allenby N E,Laing E,Bucca G,et al.Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor:genome-wide identification of in vivo targets.Nucleic Acids Res,2012,40(19):9543-9556.

[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] ZHU Shuai,JIN Ming-jie,YANG Shu-lin. A Review on Applications of 3D Bioprinting in Cartilage Tissue Regeneration Engineering[J]. China Biotechnology, 2021, 41(5): 65-71.
[4] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[5] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[6] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[7] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[8] PENG Xiang-lei,WANG Ye,WANG Li-nan,SU Yan-bin,FU Yuan-hui,ZHENG Yan-peng,HE Jin-sheng. Single-Primer PCR for Site-Directed Mutagenesis[J]. China Biotechnology, 2020, 40(8): 19-23.
[9] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[10] YU Xing-ge,LIN Kai-li. The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering[J]. China Biotechnology, 2020, 40(5): 69-77.
[11] WANG Yuan-dou,SU Feng,LI Su-ming. Research Progress of Photocrosslinked Hydrogel in Tissue Engineering[J]. China Biotechnology, 2020, 40(4): 91-96.
[12] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[13] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[14] YAN Ge,QIAO Wei-hua,CAO Hong,SHI Jia-wei,DONG Nian-guo. Application of Surface Modification of Polydopamine in Tissue Engineering[J]. China Biotechnology, 2020, 40(12): 75-81.
[15] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.