Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (9): 69-76    DOI: 10.13523/j.cb.2004033
    
Recent Advances in Butanol Biosynthesis of Escherichia coli
YAN Wei-huan1,2,HUANG Tong1,2,HONG Jie-fang1,MA Yuan-yuan1,3,4,5,**()
1 Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
2 Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
3 Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
4 State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
5 State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
Download: HTML   PDF(6428KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Biobutanol has recently attracted considerable attentions as an important commodity chemical and alternative for petroleum-based fuels. Engineered butanol synthesis pathway has been introduced into E.coli, which is an excellent chassis strain for biosynthetic chemicals. However, the produce of butanol has often been limited by the problems as follows: (1) Non-optimal metabolic flux; (2) Imbalanced CoA and reducing power; (3) Low butanol yields and titer and other issues. Herein, recent advances in butanol biosynthesis of E.coli are summarized and prospected, including screening for high-efficient enzymes, optimization of carbon flux towards butanol, adjusting cofactor supply and optimization of fermentation strategies, which would provide a theoretical basis for high-efficient production of butanol.



Key wordsE. coli      1-Butanol      Biosynthesis      Metabolic engineering      Cofactor     
Received: 22 April 2020      Published: 12 October 2020
ZTFLH:  Q819  
Corresponding Authors: Yuan-yuan MA     E-mail: myy@tju.edu.cn
Cite this article:

YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli. China Biotechnology, 2020, 40(9): 69-76.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2004033     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I9/69

底盘菌株 合成途径构建及优化 丁醇生产 参考文献
BW25113 过表达atoB, hbd, crt, bcd-etf, adhE2基因;敲除adhE, ldhA, fnr, frdBC, pta基因 TB 培养基(2%甘油)中试管微氧发酵24h,产量为0.552g/L [8]
JCL109 过表达thl, hbd, crt, bcd-etf, adhE2基因 M9 培养基中摇瓶发酵60h,产量为1.2g/L [9]
BW25113 过表达thrAfbrBC, leuABCD, ilvA, Kivd, adh2基因;敲除 metA, tdh, ilvB, ilvI, adhE基因 M9Y(5g/L酵母提取物)中摇瓶发酵4天,产量为1g/L [10-11]
MG1655 过表达crp*, yqeF, fucO,突变atoC;敲除 fadR::IS5, arcA, pta, adhE, frdA, yqhD, eutE基因 基本培养基中微氧发酵罐发酵48h,产量为14g/L,产率为33% [12]
MG1655 lacIQ 过表达atoB, fadB, fadE, adhE(G568A)基因 M9 培养基中试管发酵24h,产量为0.614g/L [11]
MG1655 DE3 过表达hgdH, gctAB, ter, gcdH, adhE, hgdABC基因 HDM 培养基中发酵罐发酵50h,产量为0.085g/L [13]
AFP111 过表达cat1, sucD, hbd, cat2, abfD, adhE, bcd-etfB-etfA基因;敲除ldhA, pflB基因 LB 培养基(1.5%葡萄糖)中摇瓶发酵60h,产量为0.26g/L [14]
DH1 过表达phaA, hbd, crt, ter, adhE2, aceEF.lpd基因 TB 培养基中摇瓶发酵3天,产量为4.65g/L,产率为28% [15-16]
JCL166 过表达atoB, hbd, crt, ter, adhE2, fdhCB基因;敲除adhE, ldhA, frdBC, pta基因 TB 培养基(1.5%葡萄糖)中摇瓶发酵75h,产量和产率为15g/L和30.8% [17]
JCL299F 过表达atoB, hbd, crt, ter, fdhCB基因;优化adhE2基因RBS强度;敲除adhE, ldhA, frdBC, pta基因 TB 培养基(2%葡萄糖)中摇瓶发酵78h,产量为18.3g/L [18]
BW25113 过表达bld, adhs, phaA, phaB, phaJter基因;敲除ldhA基因 M9 培养基(3%葡萄糖)中分批发酵28h,产量为8.6g/L,产率为0.13% [19]
BW25113 过表达hbd, ter, adhE2, crt, atoB, fdh基因;优化tercrt基因RBS强度;敲除ldhA, adhE, frdBC, ackA-pta, yqhD, eutE, hyc-hyp, fdhF, mdh, pykA, maeB, mdh, yieP, stpA, yqeG, yagM, yciA, poxB基因 M9Y 培养基(7%葡萄糖)中分批发酵70h,产量为20g/L [20-24]
Table 1 Butanol production by engineered E. coli strains
Fig.1 Butanol synthesis pathway in E. coli
[1]   Saini M, Hong Chen M, Chiang C J, et al. Potential production platform of n-butanol in Escherichia coli. Metabolic Engineering, 2015,27:76-82.
pmid: 25461833
[2]   Dürre P. Fermentative production of butanol-the academic perspective. Current Opinion in Biotechnology, 2011,22(3):331-336.
pmid: 21565485
[3]   Mussatto S I, Dragone G, Guimarães P M R, et al. Technological trends, global market, and challenges of bio-ethanol production . Biotechnology Advances, 2010,28(6):817-830.
pmid: 20630488
[4]   Formanek J, Mackie R, Blaschek H P. Enhanced Butanol Production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Applied & Environmental Microbiology, 1997,63(6):2306-2310.
doi: 10.1128/AEM.63.6.2306-2310.1997 pmid: 16535628
[5]   Jang Y S, Lee S Y. Recent advances in biobutanol production. Industrial Biotechnology, 2015,11(6):316-321.
[6]   Dong H, Zhao C, Zhang T, et al. Bioreactor engineering research and industrial applications I. Berlin: Springer Berlin Heidelberg, 2015: 155:141-163.
[7]   Jeong H, Lee S W, Kim S H, et al. Global functional analysis of butanol-sensitive Escherichia coli and its evolved butanol-tolerant strain. J Microbiol Biotechnology, 2017,27(6):1171-1179.
[8]   Atsumi S, Cann A F, Connor M R, et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering, 2008,10(6):305-311.
[9]   Inui M, Suda M, Kimura S, et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology, 2008,77(6):1305-1316.
pmid: 18060402
[10]   Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008,451(7174):86-89.
[11]   Shen C R, Liao J C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metabolic Engineering, 2008,10(6):312-320.
pmid: 18775501
[12]   Dellomonaco C, Clomburg J M, Miller E N, et al. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011,476(7360):355-359.
pmid: 21832992
[13]   Ferreira S, Pereira R, Liu F, et al. Discovery and implementation of a novel pathway for n-butanol production via 2-oxoglutarate. Biotechnology for Biofuels, 2019,12(1):230.
[14]   姜岷, 张秋妍, 郭亭, 等. 产丁醇基因工程菌的构建、菌株及其应用: 中国,CN201210067927.8. 2012-08-01[2020-04-22]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SCPD&dbname=SCPD2012&filename=CN102618569A&v=MzE1MTUwQzVoNkRRNU56eGNWN1RkNlRRN2ozUkphZTdLV1JicVdadU51RXl6c1ViMD1KaU82SHJHK0g5bkpxWVk=.
[14]   Jiang M, Zhang Q Y, Guo T, et al. Construction, strain and application of genetic engineered butanol producing strain: China,CN201210067927.8. 2012-08-01[2020-04-22]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SCPD&dbname=SCPD2012&filename=CN102618569A&v=MzE1MTUwQzVoNkRRNU56eGNWN1RkNlRRN2ozUkphZTdLV1JicVdadU51RXl6c1ViMD1KaU82SHJHK0g5bkpxWVk=
[15]   Bond-Watts , B.B. , Chang , et al. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chemical Biology, 2011,7(4):222-227.
doi: 10.1038/nchembio.537 pmid: 21358636
[16]   Chang Michelle C Y, Bond-Watts B, Wen M, et al. Synthetic pathways for biofuel synthesis: United States,US201213708824. 2014-01-02[2020-04-22] https://xueshu.baidu.com/usercenter/paper/show?paperid=e82b88cc61a899e35eed97bed59d470f&site=xueshu_se&hitarticle=1.
[17]   Shen C R, Lan E I, Dekishima Y, et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol., 2011,77(9):2905-2915.
[18]   Ohtake T, Pontrelli S, Laviña W A, et al. Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli . Metabolic Engineering, 2017,41:135-143.
[19]   Kataoka N, Vangnai A S, Pongtharangkul T, et al. Construction of CoA-dependent 1-butanol synthetic pathway functions under aerobic conditions in Escherichia coli. Journal of Biotechnology, 2015,204:25-32.
pmid: 25865277
[20]   Dong H, Zhao C, Zhang T, et al. A systematically chromosomally engineered Escherichia coli efficiently produces butanol. Metabolic Engineering, 2017,44:284-292.
pmid: 29102594
[21]   姜岷, 张秋妍, 欧阳平凯, 等. 一种构建高产丁醇菌株的方法与应用: 中国,CN201510924308.X. 2016-03-02[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[21]   Jiang M, Zhang Q Y, Ou Yang P K, et al. A method of constructing high-butanol-producing strain and its application. China,CN201510924308.X. 2016-03-02[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[22]   董红军, 赵春华, 张延平, 等. 一种提高大肠杆菌生产丁醇的方法: 中国,CN201610035150.5. 2016-04-20[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[22]   Dong H J, Zhao C H, Zhang Y P, et al. A method for improving the production of butanol by Escherichia coli. China, CN201610035150.5. 2016-04-20[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[23]   董红军, 赵春华, 张延平, 等. 一种丁酸产量低且丁醇产量高的工程菌及其构建方法与应用: 中国,CN201610034891.1. 2016-05-11[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[23]   Dong H J, Zhao C H, Zhang Y P, et al. Construction of engineering bacteria with low butyric acid output and high butanol output and its application. China, CN201610034891.1. 2016-05-11[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[24]   董红军, 赵春华, 李寅, 等. 高产丁醇的大肠杆菌基因工程菌及其构建方法与应用: 中国, CN201610204922.3. 2017-10-24[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[24]   Dong H J, Zhao C H, Li Y, et al. A method of constructing high-butanol-producing engineered Escherichia coli strain and its application. China, CN201610204922.3. 2017-10-24[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[25]   Holland-Staley C A, Lee K S, Clark D P, et al. Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid. Journal of BACTERiology, 2000,182(21):6049-6054.
[26]   Heo M J, Jung H M, Um J, et al. Controlling citrate synthase expression by CRISPR/Cas9 genome editing for n-butanol production in Escherichia coli. ACS Synthetic Biology, 2017,6(2):182-189.
pmid: 27700055
[27]   Gulevich A Y, Skorokhodova A Y, Sukhozhenko A V, et al. Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway. Biotechnology Letters. 2012,34(3):463-469.
[28]   Dong H, Zhao C, Zhang T, et al. Engineering Escherichia coli cell factories for n-butanol production//Bioreactor Engineering Research and Industrial Applications I. Berlin:Springer Berlin Heidelberg, 2015: 141-163.
[29]   Kim S K, Seong W, Han G H, et al. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Microbial Cell Factories, 2017,16(1):188.
doi: 10.1186/s12934-017-0802-x pmid: 29100516
[30]   Nitta K, Laviña W A, Pontrelli S, et al. Metabolome analysis revealed the knockout of glyoxylate shunt as an effective strategy for improvement of 1-butanol production in transgenic Escherichia coli. Journal of Bioscience and Bioengineering, 2019,127(3):301-308.
doi: 10.1016/j.jbiosc.2018.08.013 pmid: 30482596
[31]   Maharjan R P, Yu P L, Seeto S, et al. The role of isocitrate lyase and the glyoxylate cycle in Escherichia coli growing under glucose limitation. Research in Microbiology, Elsevier, 2005,156(2):178-183.
[32]   Wang Q, Liu L, Shi J, et al. Engineering Escherichia coli for autoinducible production of n-butanol. Electronic Journal of Biotechnology, 2015,18(2):138-142.
[33]   秦义, 董志姚, 刘立明, 等. 工业微生物中NADH的代谢调控. 生物工程学报, 2009,25(2):161-169.
[33]   Qin Y, Dong Z T, Liu L M, et al. Manipulation of NADH metabolism in industrial strains. Chinese Journal of Biotechnology, 2009,25(2):161-169.
[34]   Pontrelli S, Chiu T Y, Lan E I, et al. Escherichia coli as a host for metabolic engineering. Metabolic Engineering, 2018,50:16-46.
doi: 10.1016/j.ymben.2018.04.008 pmid: 29689382
[35]   Lim J H, Seo S W, Kim S Y, et al. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013,20:56-62.
[36]   Wilkinson K D, Williams C H. NADH inhibition and NAD activation of Escherichia coli lipoamide Dehydrogenase Catalyzing the NADH-Lipoamide Reaction. Journal of Biological Chemistry, 1981,256(5):2307-2314.
pmid: 7007381
[37]   Kim Y, Ingram L O, Shanmugam K T. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. Journal of Bacteriology, 2008,190(11):3851-3858.
pmid: 18375566
[38]   Saini M, Li S Y, Wang Z W, et al. Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol. Biotechnology for Biofuels, 2016,9(1):69-78.
doi: 10.1186/s13068-016-0467-4
[39]   赵云鹏, 赛尼·莫卡西, 姜中人. 可生产正丁醇的菌株及其应用: 中国, CN201510531354.3. 2015-11-18[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[39]   Zhao Y P, Mocassi S, Jiang Z R, et al. A butanol-production strain and its application. China, CN201510531354.3. 2015-11-18[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[40]   Wen R C, Shen C R. Self-regulated 1-butanol production in Escherichia coli based on the endogenous fermentative control. Biotechnology for Biofuels, 2016,9(1):267.
doi: 10.1186/s13068-016-0680-1
[41]   赵云鹏. 分别可生产丁酸和正丁醇的菌株及生成正丁醇的方法: 中国, CN201410050883.7. 2015-07-22[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[41]   Zhao Y P. A butanol-production and butyric acid-production strain and method for producing n-butanol. China, CN201410050883.7. 2015-07-22[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[42]   王庆龙, 刘莉, 史吉平, 等. 丁醇基因在大肠杆菌中表达的现状与展望. 中国生物工程杂志, 2014,34(6):90-97.
doi: 10.13523/j.cb.20140613
[42]   Wang Q L, Liu L, Shi J P, et al. Current status and prospects of the expression of butanol pathway in Escherichia coli. China Biotechnology, 2014,34(6):90-97.
doi: 10.13523/j.cb.20140613
[43]   贺雪婷, 张敏华, 洪解放, 等. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展. 中国生物工程杂志, 2018,38(9):81-87.
[43]   He X T, Zhang M H, Hong J F, et al. Research progress on butanol-tolerant strain and tolerance mechanism of Escherichia coli. China Biotechnology, 2018,38(9):81-87.
[44]   Chin W C, Lin K H, Liu C C, et al. Improved n-butanol production via co-expression of membrane-targeted tilapia metallothionein and the clostridial metabolic pathway in Escherichia coli. BMC Biotechnology, 2017,17(1):36.
doi: 10.1186/s12896-017-0356-3 pmid: 28399854
[45]   Zhao C, Sinumvayo J P, Zhang Y, et al. Design and development of a “Y-shaped” microbial consortium capable of simultaneously utilizing biomass sugars for efficient production of butanol. Metabolic Engineering, 2019,55:111-119.
pmid: 31251983
[46]   马泽林, 刘家亨, 黄序, 等. 微生物利用木质纤维素的研究进展. 中国生物工程杂志, 2017,37(6):124-133.
[46]   Ma Z L, Liu J H, Huang X, et al. Research progress on utilization of lignocellulosic biomass by microorganisms. China Biotechnology, 2017,37(6):124-133.
[47]   卞化, 孙新晓, 袁其朋, 等. 代谢工程改造异养微生物固定CO2研究进展. 生物工程学报, 2019,35(2):195-203.
doi: 10.13345/j.cjb.180267 pmid: 30806049
[47]   Bian H, Sun X X, Yuan Q P, et al. Advances in metabolic engineering of heterotrophic microorganisms for CO2 fixation: a review. Chinese Journal of Biotechnology, 2019,35(2):195-203.
doi: 10.13345/j.cjb.180267 pmid: 30806049
[48]   Antonovsky N, Gleizer S, Noor E, et al. Sugar synthesis from CO2 in Escherichia coli. Cell, 2016,166(1):115-125.
pmid: 27345370
[49]   Gleizer S, Ben-Nissan R, Bar-On Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell, 2019,179(6):1255-1263.
pmid: 31778652
[50]   Choi K R, Jang W D, Yang D, et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends in Biotechnology, 2019,37(8):817-837.
pmid: 30737009
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[3] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[4] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[5] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[6] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[7] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[8] WU Hong-xuan, YANG Jin-hua, SHEN Pei-jie, LI Qing-chen, HUANG Jian-zhong, QI Feng. Study on the Production of Indole-3-acetic Acid Using E. coli Cell Factory[J]. China Biotechnology, 2021, 41(1): 12-19.
[9] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[10] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[11] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[12] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[13] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[14] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[15] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.