Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (10): 76-84    DOI: 10.13523/j.cb.2005070
    
Recent Advances in Microbial Production of Phloretin and Its Glycosides
LIU Jin-cong1,LIU Xue1,YU Hong-jian2,ZHAO Guang-rong1,**()
1 School of Chemical Engineering and Technology, Tianjin University, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
2 Ubasio Biotech Go.,Ltd., Tianjin 300450, China
Download: HTML   PDF(3093KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Phloretin and its glycosides are natural dihydrochalcones with various physiological activities, such as antioxidant, anti-inflammatory and anti-bacterial activities, and have potential application in food, pharmaceutical, and cosmetics industries. At present, phloretin and its glycosides are mainly extracted from plants. However, the low content and complex components make it difficult to prepare products with high efficiency and low cost. With the development of metabolic engineering and synthetic biology, microbial production of phloretin and its glycosides has become an alternative approach. This article reviews the identification of key genes, the reconstruction of synthetic pathways and optimization strategies for the biosynthesis of phloretin and its glycosides. Finally, the potential strategies to solve existing problems as unspecific enzymes and the formation of multiple byproducts were proposed.



Key wordsPhloretin      Phloretin-glycosides      Microbial production      Metabolic engineering      Synthetic biology     
Received: 31 May 2020      Published: 10 November 2020
ZTFLH:  Q819  
Corresponding Authors: Guang-rong ZHAO     E-mail: grzhao@tju.edu.cn
Cite this article:

LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides. China Biotechnology, 2020, 40(10): 76-84.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2005070     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I10/76

Fig.1 Structures of phloretin and its glucosides
Fig.2 Biosynthesis pathway of phloretin and naringenin PAL: phenylalanine ammonia lyase, CPR: cytochrome P450 reductase, 4CL: 4-coumarate-CoA ligase, DBR: double-bond reductase, CHS: chalcone synthase, CHI: chalcone isomerase
Fig.3 Metabolic engineering of microbes for production of phloretin PAL: phenylalanine ammonia lyase, C4H: cinnamate-4-hydroxylase, CPR: cytochrome P450 reductase, 4CL: 4-coumarate-CoA ligase, DBR: double-bond reductase, CHS: chalcone synthase, CHI: chalcone isomerase, 2H-BNY: dihydro-bisnoryangonin, 2H-CTAL: dihydro-coumaroyltriaceticacid lactone
微生物 表达的编码酶 发酵方式 产量(mg/L) 参考文献
酿酒酵母 PAL2,C4H,CPR1,At4CL2,HaCHS,TSC13 葡萄糖,深微孔板培养 42.7 [17]
酿酒酵母 At4CL,HaCHS 添加4-二氢香豆酸,摇瓶培养 36.0 [18]
酿酒酵母 Hea4CL,HeaCHS 添加4-二氢香豆酸,摇瓶培养 48.0 [19]
酿酒酵母 Hea4CL,ErbCHS 添加4-二氢香豆酸,摇瓶培养 63.6 [19]
酿酒酵母 Hea4CL,ErbCHS,MatBC 添加4-二氢香豆酸,摇瓶培养 73.2 [19]
酿酒酵母 Hea4CL,ErbCHS,ADH2,ALD6,ACS,ACC1 添加4-二氢香豆酸,摇瓶培养 76.2 [19]
酿酒酵母 Hea4CL,ErbCHS,ADH2,ALD6,ACS,MatBC 添加4-二氢香豆酸,摇瓶培养 83.2 [19]
酿酒酵母 Hea4CL,ErbCHS,ADH2,ALD6,ACS,MatBC 添加4-二氢香豆酸,5L发酵罐 619.5 [19]
大肠杆菌 At4CL, AtCHS 添加4-二氢香豆酸,摇瓶培养 未报道 [20]
Table 1 Biosynthesis of phloretin in microbes
Fig.4 Phylogenetic tree of selected phloretin glycosyltransferases Genbank accession number for each protein is shown in brackets
[1]   Mariadoss A V A, Vinyagam R, Rajamanickam V, et al. Pharmacological aspects and potential use of phloretin: a systemic review. Mini Reviews in Medicinal Chemistry, 2019,19(13):1060-1067.
doi: 10.2174/1389557519666190311154425 pmid: 30864525
[2]   Zheng W, Chen C, Zhang C, et al. The protective effect of phloretin in osteoarthritis: an in vitro and in vivo study. Food & Function, 2018,9(1):263-278.
pmid: 29168867
[3]   冯甜, 王力彬, 周楠, 等. 根皮素的研究进展. 转化医学杂志, 2017,6(1):42-46.
[3]   Feng T, Wang L, Zhou N, et al. Advance in studies on phloretin. Translational Medicine Journal, 2017,6(1):42-46.
[4]   Bays H. Sodium glucose co-transporter type 2 (sglt2) inhibitors: targeting the kidney to improve glycemic control in diabetes mellitus. Diabetes Therapy, 2013,4(2):195-220.
doi: 10.1007/s13300-013-0042-y pmid: 24142577
[5]   Lei L, Huang B, Liu A, et al. Enzymatic production of natural sweetener trilobatin from citrus flavanone naringin using immobilised α-l-rhamnosidase as the catalyst. International Journal of Food Science & Technology, 2018,53(9):2097-2103.
[6]   Yang S, Lee C, Lee B S, et al. Renal protective effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in a mouse model of sepsis. Pharmacological Reports, 2018,70(6):1195-1201.
doi: 10.1016/j.pharep.2018.07.004 pmid: 30340097
[7]   崔树梅, 曹孟岑, 杨雪晨, 等. 根皮素在化妆品中的应用. 日用化学工业, 2018,48(2):113-118.
[7]   Cui S M, Cao M C, Yang X C, et al. Applications of phloretin in cosmetics. China Surfactant Detergent & Cosmetics, 2018,48(2):113-118.
[8]   Cravens A, Payne J, Smolke C D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nature Communications, 2019,10(1):2142.
doi: 10.1038/s41467-019-09848-w pmid: 31086174
[9]   Yang D, Park S Y, Park Y S, et al. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends in Biotechnology, 2020,38(7):745-765.
doi: 10.1016/j.tibtech.2019.11.007 pmid: 31924345
[10]   Avadhani P N, Towers G H. Fate of phenylalanine-C14 and cinnamic acid-C14 in Malus in relation to phloridzin synthesis. Canadian Journal of Biochemistry and Physiology, 1961,39(10):1605-1616.
[11]   Gosch C, Halbwirth H, Kuhn J, et al. Biosynthesis of phloridzin in apple (Malus domestica Borkh). Plant Science, 2009,176(2):223-231.
[12]   Dare A P, Tomes S, Cooney J M, et al. The role of enoyl reductase genes in phloridzin biosynthesis in apple. Plant Physiology & Biochemistry, 2013,72:54-61.
pmid: 23510577
[13]   Ibdah M, Berim A, Martens S, et al. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus x domestica Borkh. Phytochemistry, 2014,107:24-31.
doi: 10.1016/j.phytochem.2014.07.027 pmid: 25152451
[14]   Yahyaa M, Ali S, Davidovich-Rikanati R, et al. Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh). Phytochemistry, 2017,140:125-133.
doi: 10.1016/j.phytochem.2017.04.022 pmid: 28482241
[15]   Jiang H, Wood K V, Morgan J A. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005,71(6):2962-2969.
doi: 10.1128/AEM.71.6.2962-2969.2005 pmid: 15932991
[16]   Lehka B J, Eichenberger M, Bjorn-Yoshimoto W E, et al. Improving heterologous production of phenylpropanoids in Saccharomyces cerevisiae by tackling an unwanted side reaction of Tsc13, an endogenous double bond reductase. FEMS Yeast Reserach, 2017, 17(1): fox004.
[17]   Eichenberger M, Lehka B J, Folly C, et al. Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metabolic Engineering, 2017,39:80-89.
doi: 10.1016/j.ymben.2016.10.019 pmid: 27810393
[18]   Werner S R, Chen H, Jiang H, et al, 2010. Synthesis of non-natural flavanones and dihydrochalcones in metabolically engineered yeast. Journal of Molecular Catalysis B Enzymatic, 2010,66(3):257-263.
[19]   Jiang C, Liu X, Chen X, et al. Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast. Science China Life Sciences, 2020, doi: 10.1007/s11427-019-1634-8.
doi: 10.1007/s11427-019-1634-8 pmid: 32975722
[20]   Watts K T, Lee P C, Schmidt-Dannert C. Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli. ChemBioChem, 2004,5(4):500-507.
doi: 10.1002/cbic.200300783 pmid: 15185374
[21]   Yu H N, Liu X Y, Gao S, et al. Structural and biochemical characterization of the plant type III polyketide synthases of the liverwort, Marchantia paleacea. Plant Physiology and Biochemistry, 2018,125:95-105.
doi: 10.1016/j.plaphy.2018.01.030 pmid: 29428820
[22]   Elejalde-Palmett C, Billet K, Lanoue A, et al. Genome-wide identification and biochemical characterization of the UGT88F subfamily in Malus x domestica Borkh. Phytochemistry, 2019,157:135-144.
doi: 10.1016/j.phytochem.2018.10.019 pmid: 30399496
[23]   Gosch C, Halbwirth H, Schneider B, et al. Cloning and heterologous expression of glycosyltransferases from Malus x domestica and Pyrus communis, which convert phloretin to phloretin 2'-O-glucoside (phloridzin). Plant Science, 2009,178(3):299-306.
[24]   Gosch C, Flachowsky H, Halbwirth H, et al. Substrate specificity and contribution of the glycosyltransferase UGT71A15 to phloridzin biosynthesis. Trees-Structure and Function, 2012,26(1):259-271.
[25]   Jugdé H, Nguy D, Moller I, et al. Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple. FEBS Journal, 2008,275(15):3804-3814.
doi: 10.1111/j.1742-4658.2008.06526.x pmid: 18573104
[26]   Zhang T, Liang J, Wang P, et al. Purification and characterization of a novel phloretin-2'-O-glycosyltransferase favoring phloridzin biosynthesis. Scientific Reports, 2016,6:35274.
doi: 10.1038/srep35274 pmid: 27731384
[27]   Yahyaa M, Davidovich-Rikanati R, Eyal Y, et al. Identification and characterization of UDP-glucose: Phloretin 4'-O glycosyltransferase from Malus x domestica Borkh. Phytochemistry, 2016,130:47-55.
doi: 10.1016/j.phytochem.2016.06.004 pmid: 27316677
[28]   Pandey R P, Li T F, Kim E H, et al. Enzymatic synthesis of novel phloretin glucosides. Applied & Environmental Microbiology, 2013,79(11):3516-3521.
doi: 10.1128/AEM.00409-13 pmid: 23542617
[29]   Bungaruang L, Gutmann A, Nidetzky B. Leloir glycosyltransferases and natural product glycosylation: Biocatalytic synthesis of the C-glucoside nothofagin, a major antioxidant of redbush herbal tea. Advanced Synthesis & Catalysis, 2013,355(14-15):2757-2763.
doi: 10.1002/adsc.201300251 pmid: 24415961
[30]   Nagatomo Y, Usui S, Ito T, et al. Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. The Plant Journal, 2014,80(3):437-448.
doi: 10.1111/tpj.12645 pmid: 25142187
[31]   Ito T, Fujimoto S, Suito F, et al. C-glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants. Plant Journal, 2017,91(2):187-198.
doi: 10.1111/tpj.13555 pmid: 28370711
[32]   Zhang M, Li F D, Li K, et al. Functional characterization and structural basis of an efficient di-C-glycosyltransferase from Glycyrrhiza glabra. Journal of the American Chemical Society, 2020,142(7):3506-3512.
pmid: 31986016
[33]   Chen D, Sun L, Chen R, et al. Enzymatic synthesis of acylphloroglucinol 3-C-glucosides from 2-O-glucosides using a C-glycosyltransferase from Mangifera indica. Chemistry A European Journal, 2016,22(17):5873-5877.
doi: 10.1002/chem.201600411
[34]   Ban Z, Qin H, Mitchell A J, et al. Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(22):E5223-E5232.
[35]   Medema M H, Osbourn A. Computational genomic identification and functional reconstitution of plant natural product biosynthetic pathways. Nature Product Reports, 2016,33(8):951-962.
[36]   Santamaría L, Reverón I, López de Felipe F, et al. Unravelling the reduction pathway as an alternative metabolic route to hydroxycinnamate decarboxylation in Lactobacillus plantarum. Applied & Environmental Microbiology, 2018,84(15):e01123-18.
doi: 10.1128/AEM.01123-18 pmid: 29776925
[37]   Stompor M, Kałuzny M, Zarowaka B. Biotechnological methods for chalcone reduction using whole cells of Lactobacillus, Rhodococcus and Rhodotorula strains as a way to produce new derivatives. Applied Microbiology and Biotechnology, 2016,100(19):8371-8384.
doi: 10.1007/s00253-016-7607-4 pmid: 27209040
[38]   Zyszka B, Anioł M, Lipok J. Highly effective, regiospecific reduction of chalcone by cyanobacteria leads to the formation of dihydrochalcone: two steps towards natural sweetness. Microbial Cell Factories, 2017,16(1):136-151.
doi: 10.1186/s12934-017-0752-3 pmid: 28778165
[39]   Xiong D, Lu S, Wu J, et al. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor. Metabolic Engineering, 2017,40:115-123.
doi: 10.1016/j.ymben.2017.01.006 pmid: 28111248
[40]   Morita H, Wong C P, Abe I. How structural subtleties lead to molecular diversity for the type III polyketide synthases. Journal of Biological Chemistry, 2019,294(41):15121-15136.
doi: 10.1074/jbc.REV119.006129 pmid: 31471316
[41]   Camacho-Zaragoza J M, Hernández-Chávez G, Moreno-Avitia F, et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microbial Cell Factories, 2016,15(1):163.
doi: 10.1186/s12934-016-0562-z pmid: 27680538
[42]   Fang Z, Jones J A, Zhou J, et al. Engineering Escherichia coli co-cultures for production of curcuminoids from glucose. Biotechnology Journal, 2018,13(5):1700576.
[44]   Akdemir H, Silva A, Zha J, et al. Production of pyranoanthocyanins using Escherichia coli co-cultures. Metabolic Engineering, 2019,55:290-298.
doi: 10.1016/j.ymben.2019.05.008 pmid: 31125607
[44]   Liu X, Li X B, Jiang J, et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides. Metabolic Engineering, 2018,47:243-253.
[45]   Liu X, Li L, Liu J, et al. Metabolic engineering Escherichia coli for efficient production of icariside D2. Biotechnology for Biofuels, 2019,12:261.
doi: 10.1186/s13068-019-1601-x pmid: 31709010
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[4] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[5] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[6] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[7] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[8] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[9] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[10] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[11] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[12] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[13] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[14] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[15] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.