Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (9): 101-109    DOI: 10.13523/j.cb.2104006
    
Advances of Optogenetics in the Regulation of Bacterial Production
MA Ning,WANG Han-jie()
School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological, Tianjin 300072, China
Download: HTML   PDF(1007KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Advances in synthetic biology made it possible to engineer microorganisms to serve as “factories” to synthesize substances efficiently, and regulate cell activity by adding chemical inducers. However, the toxicity and irreversibility of chemical inducers limited their applications. Optogenetics, which uses light signals of specific wavelengths to regulate the process of cell life, has the characteristics of specificity, reversibility and high spatial and temporal resolution. In recent years, people have modified photosensitive proteins from different sources and developed various optogenetic elements with different wavelengths for the construction of gene circuits, and thus realized the regulation of bacterial protein synthesis and metabolism. Optogenetics technology builds a real-time signal communication between human and bacteria, making the production process more precise and controllable:(1) Drug delivery through bacteria synthesizes therapeutic factors controlled by light;(2) Improve the catalytic efficiency of the target product by controlling the metabolic pathway;(3) Control the formation of living biomaterials under light induction. With further exploration, optogenetic elements with smaller size, more wavelengths and higher efficiency will be developed to realize multi-input regulation of bacterial life activities.



Key wordsOptogenetic      Synthetic biology      Photosensitive protein      Engineered bacteria      Biomaterial      Metabolic engineering     
Received: 06 April 2021      Published: 30 September 2021
ZTFLH:  Q819  
Corresponding Authors: Han-jie WANG     E-mail: wanghj@tju.edu.cn
Cite this article:

MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production. China Biotechnology, 2021, 41(9): 101-109.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2104006     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I9/101

Fig.1 Domains of phytochrome superfamily members
Fig.2 Schematic of two-component systems (a)Two-component system based on phytochrome needs exogenous enzyme that convert haem into PCB, initiates gene expression in response to light stimulated phosphorylation (b) BphP based system use BV as chromophore, gene expression is activated by interaction between BphP1 and PpsR2 (c) YF1 phosphorylates FIXJ under dark conditions and regulates gene expression
Fig.3 Engineering application of optogenetic bacteria (a) Light controlled bacterial drug synthesis (b) Light controlled bacterial metabolic process (c) Formation and assembly of light-controlled living biological materials
底盘 光控系统 代谢物质 产量
Yeast OptoEXP/OptoINVRT Isobutanol and 2-methyl-1-butanol (8.49±0.31) g/L /(2.38±0.06) g/L[47]
E.coil MG1655 CcaS/CcaR highly-reduced metabolites (i.e.
mevalonate,fatty acids, isobutanol, and
isopropyl alcohol)[48]
-
E.coil JM109 EL222 Acetoin and lactate-co-3-hydroxybutyrate 67.2 g/L, 39.19 %wt/14.31 g/L, 137.71 %wt[49]
E.coil MG1655 OptoLAC mevalonate and isobutanol (6.4±0.2) g/L, 24 %wt/(2.5±0.1) g/L, 27 %wt[50]
Table 1 Optogenetic regulation of microbial fermentation
[1]   Way J C, Collins J J, Keasling J D, et al. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell, 2014, 157(1):151-161.
doi: 10.1016/j.cell.2014.02.039
[2]   Khalil A S, Collins J J. Synthetic biology: applications come of age. Nature Reviews Genetics, 2010, 11(5):367-379.
doi: 10.1038/nrg2775 pmid: 20395970
[3]   Taylor N D, Garruss A S, Moretti R, et al. Engineering an allosteric transcription factor to respond to new ligands. Nature Methods, 2016, 13(2):177-183.
doi: 10.1038/nmeth.3696 pmid: 26689263
[4]   Berlec A, Škrlec K, Kocjan J, et al. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis. Scientific Reports, 2018, 8:1009.
doi: 10.1038/s41598-018-19402-1 pmid: 29343791
[5]   Vilar J M, Saiz L. DNA looping in gene regulation: from the assembly of macromolecular complexes to the control of transcriptional noise. Current Opinion in Genetics & Development, 2005, 15(2):136-144.
[6]   Renicke C, Taxis C. Biophotography: concepts, applications and perspectives. Applied Microbiology and Biotechnology, 2016, 100(8):3415-3420.
doi: 10.1007/s00253-016-7384-0
[7]   Shao J W, Wang M Y, Yu G L, et al. Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. PNAS, 2018, 115(29):E6722-E6730.
doi: 10.1073/pnas.1802448115
[8]   Wu Y I, Frey D, Lungu O I, et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature, 2009, 461(7260):104-108.
doi: 10.1038/nature08241
[9]   Kennedy M J, Hughes R M, Peteya L A, et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nature Methods, 2010, 7(12):973-975.
doi: 10.1038/nmeth.1524
[10]   Ye H F, Fussenegger M. Optogenetic medicine: synthetic therapeutic solutions precision-guided by light. Cold Spring Harbor Perspectives in Medicine, 2019, 9(9):a034371.
doi: 10.1101/cshperspect.a034371
[11]   Mansouri M, Strittmatter T, Fussenegger M. Light-controlled mammalian cells and their therapeutic applications in synthetic biology. Advanced Science (Weinheim, Baden Wurttemberg, Germany), 2019, 6(1):1800952.
[12]   Gradinaru V, Mogri M, Thompson K R, et al. Optical deconstruction of parkinsonian neural circuitry. Science, 2009, 324(5925):354-359.
doi: 10.1126/science.1167093 pmid: 19299587
[13]   Rost B R, Schneider-Warme F, Schmitz D, et al. Optogenetic tools for subcellular applications in neuroscience. Neuron, 2017, 96(3):572-603.
doi: 10.1016/j.neuron.2017.09.047
[14]   Gradinaru V, Zhang F, Ramakrishnan C, et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell, 2010, 141(1):154-165.
doi: 10.1016/j.cell.2010.02.037 pmid: 20303157
[15]   Fernandez-Rodriguez J, Moser F, Song M, et al. Engineering RGB color vision into Escherichia coli. Nature Chemical Biology, 2017, 13(7):706-708.
doi: 10.1038/nchembio.2390 pmid: 28530708
[16]   Yeh K C, Wu S H, Murphy J T, et al. A cyanobacterial phytochrome two-component light sensory system. Science, 1997, 277(5331):1505-1508.
pmid: 9278513
[17]   Wiltbank L B, Kehoe D M. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nature Reviews Microbiology, 2019, 17(1):37-50.
doi: 10.1038/s41579-018-0110-4 pmid: 30410070
[18]   Liu Z D, Zhang J Z, Jin J, et al. Programming bacteria with light-sensors and applications in synthetic biology. Frontiers in Microbiology, 2018, 9:2692.
doi: 10.3389/fmicb.2018.02692
[19]   Rockwell N C, Lagarias J C. Phytochrome diversification in cyanobacteria and eukaryotic algae. Current Opinion in Plant Biology, 2017, 37:87-93.
doi: S1369-5266(16)30200-X pmid: 28445833
[20]   Rockwell N C, Martin S S, Feoktistova K, et al. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. PNAS, 2011, 108(29):11854-11859.
doi: 10.1073/pnas.1107844108 pmid: 21712441
[21]   Davis S J. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science, 1999, 286(5449):2517-2520.
pmid: 10617469
[22]   Bhoo S H, Davis S J, Walker J, et al. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature, 2001, 414(6865):776-779.
doi: 10.1038/414776a
[23]   Giraud E, Zappa S, Vuillet L, et al. A new type of bacteriophytochrome Acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris. Journal of Biological Chemistry, 2005, 280(37):32389-32397.
pmid: 16009707
[24]   Losi A, Polverini E, Quest B, et al. First evidence for phototropin-related blue-light receptors in prokaryotes. Biophysical Journal, 2002, 82(5):2627-2634.
pmid: 11964249
[25]   Herrou J, Crosson S. Function, structure and mechanism of bacterial photosensory LOV proteins. Nature Reviews Microbiology, 2011, 9(10):713-723.
doi: 10.1038/nrmicro2622
[26]   Levskaya A, Chevalier A A, Tabor J J, et al. Engineering Escherichia coli to see light. Nature, 2005, 438(7067):441-442.
doi: 10.1038/nature04405
[27]   Tabor J J, Levskaya A, Voigt C A. Multichromatic control of gene expression in Escherichia coli. Journal of Molecular Biology, 2011, 405(2):315-324.
doi: 10.1016/j.jmb.2010.10.038
[28]   Ramakrishnan P, Tabor J J. Repurposing Synechocystis PCC6803 UirS-UirR as a UV-violet/green photoreversible transcriptional regulatory tool in E. coli. ACS Synthetic Biology, 2016, 5(7):733-740.
doi: 10.1021/acssynbio.6b00068 pmid: 27120220
[29]   Ong N T, Olson E J, Tabor J J. Engineering an E. coli near-infrared light sensor. ACS Synthetic Biology, 2018, 7(1):240-248.
doi: 10.1021/acssynbio.7b00289
[30]   Möglich A, Ayers R A, Moffat K. Design and signaling mechanism of light-regulated histidine kinases. Journal of Molecular Biology, 2009, 385(5):1433-1444.
doi: 10.1016/j.jmb.2008.12.017
[31]   Ohlendorf R, Vidavski R R, Eldar A, et al. From dusk till dawn: one-plasmid systems for light-regulated gene expression. Journal of Molecular Biology, 2012, 416(4):534-542.
doi: 10.1016/j.jmb.2012.01.001 pmid: 22245580
[32]   Zoltowski B D, Motta-Mena L B, Gardner K H. Blue light-induced dimerization of a bacterial LOV-HTH DNA-binding protein. Biochemistry, 2013, 52(38):6653-6661.
doi: 10.1021/bi401040m pmid: 23992349
[33]   Motta-Mena L B, Reade A, Mallory M J, et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nature Chemical Biology, 2014, 10(3):196-202.
doi: 10.1038/nchembio.1430 pmid: 24413462
[34]   Wang X, Chen X J, Yang Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nature Methods, 2012, 9(3):266-269.
doi: 10.1038/nmeth.1892 pmid: 22327833
[35]   Kawano F, Suzuki H, Furuya A, et al. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nature Communications, 2015, 6:6256.
doi: 10.1038/ncomms7256 pmid: 25708714
[36]   Sheets M B, Wong W W, Dunlop M J. Light-inducible recombinases for bacterial optogenetics. ACS Synthetic Biology, 2020, 9(2):227-235.
doi: 10.1021/acssynbio.9b00395
[37]   Magaraci M S, Veerakumar A, Qiao P, et al. Engineering Escherichia coli for light-activated cytolysis of mammalian cells. ACS Synthetic Biology, 2014, 3(12):944-948.
doi: 10.1021/sb400174s pmid: 24933444
[38]   Sankaran S, Becker J, Wittmann C, et al. Optoregulated drug release from an engineered living material: self-replenishing drug depots for long-term, light-regulated delivery. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(5):e1804717.
[39]   Sankaran S, Del Campo A. Optoregulated protein release from an engineered living material. Advanced Biosystems, 2019, 3(2):e1800312.
[40]   Steidler L, Neirynck S, Huyghebaert N, et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nature Biotechnology, 2003, 21(7):785-789.
pmid: 12808464
[41]   Motta J P, Bermúdez-Humarán L G, Deraison C, et al. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Science Translational Medicine, 2012, 4(158): 158ra144.
[42]   Riglar D T, Giessen T W, Baym M, et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nature Biotechnology, 2017, 35(7):653-658.
doi: 10.1038/nbt.3879 pmid: 28553941
[43]   Daeffler K N M, Galley J D, Sheth R U, et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Molecular Systems Biology, 2017, 13(4):923.
doi: 10.15252/msb.20167416
[44]   Archer E J, Robinson A B, Süel G M. EngineeredE. coliThat detect and respond to gut inflammation through nitric oxide sensing. ACS Synthetic Biology, 2012, 1(10):451-457.
doi: 10.1021/sb3000595 pmid: 23656184
[45]   Kurtz C B, Millet Y A, Puurunen M K, et al. An engineeredE. coliNissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Science Translational Medicine, 2019, 11(475): eaau7975. DOI: 10.1126/scitranslmed.aau7975.
doi: 10.1126/scitranslmed.aau7975
[46]   Yang C, Cui M H, Zhang Y Y, et al. Upconversion optogenetic micro-nanosystem optically controls the secretion of light-responsive bacteria for systemic immunity regulation. Communications Biology, 2020, 3:561.
doi: 10.1038/s42003-020-01287-4
[47]   Zhao E M, Zhang Y F, Mehl J, et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature, 2018, 555(7698):683-687.
doi: 10.1038/nature26141
[48]   Tandar S T, Senoo S, Toya Y, et al. Optogenetic switch for controlling the central metabolic flux of Escherichia coli. Metabolic Engineering, 2019, 55:68-75.
doi: 10.1016/j.ymben.2019.06.002
[49]   Ding Q, Ma D L, Liu G Q, et al. Light-powered Escherichia coli cell division for chemical production. Nature Communications, 2020, 11(1):2262.
doi: 10.1038/s41467-020-16154-3
[50]   Lalwani M A, Ip S S, Carrasco-López C, et al. Optogenetic control of the lac operon for bacterial chemical and protein production. Nature Chemical Biology, 2021, 17(1):71-79.
doi: 10.1038/s41589-020-0639-1
[51]   Tang T C, An B L, Huang Y Y, et al. Materials design by synthetic biology. Nature Reviews Materials, 2021, 6(4):332-350.
doi: 10.1038/s41578-020-00265-w
[52]   Choi Y, Lee S Y. Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages. Nature Reviews Chemistry, 2020, 4(12):638-656.
doi: 10.1038/s41570-020-00221-w
[53]   Huang J F, Liu S Y, Zhang C, et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nature Chemical Biology, 2019, 15(1):34-41.
doi: 10.1038/s41589-018-0169-2
[54]   Chen F, Wegner S V. Blue light switchable bacterial adhesion as a key step toward the design of biofilms. ACS Synthetic Biology, 2017, 6(12):2170-2174.
doi: 10.1021/acssynbio.7b00197 pmid: 28803472
[55]   Jin X F, Riedel-Kruse I H. Biofilm Lithography enables high-resolution cell patterning via optogenetic adhesin expression. PNAS, 2018, 115(14):3698-3703.
doi: 10.1073/pnas.1720676115
[56]   Barnhart M M, Chapman M R. Curli biogenesis and function. Annual Review of Microbiology, 2006, 60:131-147.
doi: 10.1146/annurev.micro.60.080805.142106
[57]   Chen A Y, Deng Z T, Billings A N, et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Materials, 2014, 13(5):515-523.
doi: 10.1038/nmat3912
[58]   Wang X Y, Pu J H, An B L, et al. Programming cells for dynamic assembly of inorganic nano-objects with spatiotemporal control. Advanced Materials (Deerfield Beach, Fla), 2018, 30(16):e1705968.
[59]   Moser F, Tham E, González L M, et al. Light-controlled, high-resolution patterning of living engineered bacteria onto textiles, ceramics, and plastic. Advanced Functional Materials, 2019, 29(30):1901788.
doi: 10.1002/adfm.v29.30
[60]   Wang Y Y, An B L, Xue B, et al. Living materials fabricated via gradient mineralization of light-inducible biofilms. Nature Chemical Biology, 2021, 17(3):351-359.
doi: 10.1038/s41589-020-00697-z
[1] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[2] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[3] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[4] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[5] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[6] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[7] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[8] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[9] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[10] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[11] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[12] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[13] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[14] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[15] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.