Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (12): 75-81    DOI: 10.13523/j.cb.2007049
    
Application of Surface Modification of Polydopamine in Tissue Engineering
YAN Ge,QIAO Wei-hua,CAO Hong,SHI Jia-wei,DONG Nian-guo()
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College,Huazhong University of Science and Technology, Wuhan 430022,China
Download: HTML   PDF(962KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As a biomimetic material of mussel, polydopamine can be formed spontaneously by dopamine in alkaline environment. Because of its good adhesion properties and histocompatibility, it has a wide range of applications in life sciences and other fields. Surface modification of the material with polydopamine can not only protect the material from external corrosion such as strong oxidants, acids and alkalis, but also give the material new functions through surface modification, making it play a better role in various fields. The preparation principle, biological properties of polydopamine and its application in tissue engineering (bone tissue, cartilage tissue, dural tissue, blood vessel tissue, ear tissue) in recent years are reviewed, in order to provide reference for the follow-up study of polydopamine as a tissue engineering adhesive material.



Key wordsPolydopamine      Surface modification      Tissue engineering     
Received: 29 July 2020      Published: 14 January 2021
ZTFLH:  Q819  
Corresponding Authors: Nian-guo DONG     E-mail: dongnianguo@hotmail.com
Cite this article:

YAN Ge,QIAO Wei-hua,CAO Hong,SHI Jia-wei,DONG Nian-guo. Application of Surface Modification of Polydopamine in Tissue Engineering. China Biotechnology, 2020, 40(12): 75-81.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2007049     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I12/75

Fig.1 The synthesis schematic diagram of PDA “eumelanin”model
Fig.2 PDA was coated on the material surface and covalently grafted nucleophilic molecules containing functional groups such as amine, mercaptan and imidazole
[1]   Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007,318(5849):426-430.
doi: 10.1126/science.1147241 pmid: 17947576
[2]   Zhang C, Wu B, Zhou Y, et al. Mussel-inspired hydrogels: from design principles to promising applications. Chem Soc Rev, 2020,49(11):3605-3637.
doi: 10.1039/c9cs00849g pmid: 32393930
[3]   Pandey N, Soto-Garcia L F, Liao J, et al. Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives. Biomater Sci, 2020,8(5):1240-1255.
pmid: 31984389
[4]   Kang S M, Hwang N S, Yeom J, et al. One-step multipurpose surface functionalization by adhesive catecholamine. Adv Funct Mater, 2012,22(14):2949-2955.
pmid: 23580891
[5]   Huang H, Liu M, Xu D, et al. Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP. Mater Sci Eng C Mater Biol Appl, 2020,106:110157.
pmid: 31753361
[6]   Hu J, Yang L, Yang P, et al. Polydopamine free radical scavengers. Biomater Sci, 2020,8(18):4940-4950.
pmid: 32807998
[7]   Wang Z, Zou Y, Li Y, et al. Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics. Small, 2020,16(18):e1907042.
[8]   Liu H, Qu X, Tan H, et al. Role of polydopamine’s redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities. Acta Biomater, 2019,88:181-196.
doi: 10.1016/j.actbio.2019.02.032 pmid: 30818052
[9]   Srivastava A K, Roy Choudhury S, Karmakar S. Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson’s disease therapy. Biomater Sci, 2020,8(5):1345-1363.
doi: 10.1039/c9bm01602c pmid: 31912833
[10]   Jia L, Han F, Wang H, et al. Polydopamine-assisted surface modification for orthopaedic implants. J Orthop Translat, 2019,17:82-95.
doi: 10.1016/j.jot.2019.04.001 pmid: 31194087
[11]   Liu D, Ma L, Liu L, et al. Polydopamine-encapsulated Fe3O4 with an adsorbed HSP70 inhibitor for improved photothermal inactivation of bacteria. ACS Appl Mater Interfaces, 2016,8(37):24455-24462.
doi: 10.1021/acsami.6b08119
[12]   Kang H, Zhang X, Li L, et al. Polydopamine and poly(dimethylsiloxane) modified superhydrophobic fiberglass membranes for efficient water-in-oil emulsions separation. J Colloid Interface Sci, 2020,559:178-185.
doi: 10.1016/j.jcis.2019.10.016 pmid: 31627141
[13]   Jing X, Mi H Y, Lin Y J, et al. Highly stretchable and biocompatible strain sensors based on mussel-inspired super-adhesive self-healing hydrogels for human motion monitoring. ACS Appl Mater Interfaces, 2018,10(24):20897-20909.
doi: 10.1021/acsami.8b06475 pmid: 29863322
[14]   Tao W, Zeng X, Wu J, et al. Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics, 2016,6(4):470-484.
doi: 10.7150/thno.14184 pmid: 26941841
[15]   Wang W, Tang Z, Zhang Y, et al. Mussel-Inspired polydopamine: the bridge for targeting drug delivery system and synergistic cancer treatment. Macromol Biosci, 2020,20(10):e2000222.
doi: 10.1002/mabi.202000222 pmid: 32761887
[16]   Farokhi M, Mottaghitalab F, Saeb M R, et al. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J Control Release, 2019,309:203-219.
doi: 10.1016/j.jconrel.2019.07.036 pmid: 31362077
[17]   Kuang Y, Zhang Y, Zhao Y, et al. Dual-Stimuli-responsive multifunctional Gd2Hf2O7 nanoparticles for MRI-guided combined chemo-/photothermal-/radiotherapy of resistant tumors. ACS Appl Mater Interfaces, 2020,12(32):35928-35939.
doi: 10.1021/acsami.0c09422 pmid: 32686939
[18]   Xu X, Liu X, Tan L, et al. Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater, 2018,77:352-364.
doi: 10.1016/j.actbio.2018.07.030 pmid: 30030176
[19]   Choi H, Cho S H, Hahn S K. Urease-powered polydopamine nanomotors for intravesical therapy of bladder diseases. ACS Nano, 2020,14(6):6683-6692.
doi: 10.1021/acsnano.9b09726 pmid: 32491832
[20]   Jin A, Wang Y, Lin K, et al. Nanoparticles modified by polydopamine: working as “drug”carriers. Bioact Mater, 2020; 5(3):522-541.
doi: 10.1016/j.bioactmat.2020.04.003 pmid: 32322763
[21]   Sarkar S Levi-Polyachenko N. Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Adv Drug Deliv Rev, 2020, 163-164:40-64.
doi: 10.1016/s0169-409x(99)00063-0 pmid: 10699312
[22]   Ding F, Gao X, Huang X, et al. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials, 2020,245:119976.
doi: 10.1016/j.biomaterials.2020.119976 pmid: 32213362
[23]   Hauser D, Septiadi D, Turner J, et al. From bioinspired glue to medicine: polydopamine as a biomedical material. Materials, 2020,13(7):1730.
doi: 10.3390/ma13071730
[24]   Jin A, Wang Y, Lin K, et al. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioact Mater, 2020,5(3):522-541.
doi: 10.1016/j.bioactmat.2020.04.003 pmid: 32322763
[25]   Ghorbani F, Ghalandari B, Khan A L, et al. Decoration of electrical conductive polyurethane-polyaniline/polyvinyl alcohol matrixes with mussel-inspired polydopamine for bone tissue engineering. Biotechnol Prog, 2020,36(6):e3043.
doi: 10.1002/btpr.3043 pmid: 32592333
[26]   Liu Y, Han Y, Dong H, et al. Ca2+-mediated surface polydopamine engineering to program dendritic cell maturation. ACS Appl Mater Interfaces, 2020,12(3):4163-4173.
doi: 10.1021/acsami.9b20997 pmid: 31891476
[27]   Cheng W, Zeng X, Chen H, et al. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano, 2019,13(8):8537-8565.
doi: 10.1021/acsnano.9b04436
[28]   Bernsmann F, Ball V, Addiego F, et al. Dopamine-melanin film deposition depends on the used oxidant and buffer solution. Langmuir, 2011,27(6):2819-2825.
doi: 10.1021/la104981s pmid: 21332218
[29]   Kord Forooshani P, Lee B P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J Polym Sci A Polym Chem, 2017,55(1):9-33.
doi: 10.1002/pola.28368 pmid: 27917020
[30]   Dreyer D R, Miller D J, Freeman B D, et al. Elucidating the structure of poly(dopamine). Langmuir, 2012,28(15):6428-6435.
doi: 10.1021/la204831b pmid: 22475082
[31]   Cai J S, Huang J Y, Ge M Z, et al. Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors. Small, 2017,13(19). DOI: 10.1002/smll.201604240.
doi: 10.1002/smll.201604240 pmid: 28266808
[32]   Wang J L, Li B C, Li Z J, et al. Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials, 2014,35(27):7679-7689.
doi: 10.1016/j.biomaterials.2014.05.047 pmid: 24929615
[33]   Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev, 2014,114(9):5057-5115.
doi: 10.1021/cr400407a pmid: 24517847
[34]   Tan Y, Deng W, Li Y, et al. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications. J Phys Chem B, 2010,114(15):5016-5024.
doi: 10.1021/jp100922t pmid: 20337455
[35]   Della Vecchia N F, Luchini A, Napolitano A, et al. Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties. Langmuir, 2014,30(32):9811-9818.
doi: 10.1021/la501560z pmid: 25066905
[36]   Ju K Y, Lee Y, Lee S, et al. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules, 2011,12(3):625-632.
doi: 10.1021/bm101281b
[37]   Ball V, Del Frari D, Toniazzo V, et al. Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: insights in the polydopamine deposition mechanism. J Colloid Interface Sci, 2012,386(1):366-372.
doi: 10.1016/j.jcis.2012.07.030 pmid: 22874639
[38]   Jun D R, Moon S K, Choi S W. Uniform polydimethylsiloxane beads coated with polydopamine and their potential biomedical applications. Colloids and Surfaces B: Biointerfaces, 2014,121:395-399.
doi: 10.1016/j.colsurfb.2014.06.027 pmid: 24993068
[39]   Chung E J, Jun D R, Kim D W, et al. Prevention of polydimethylsiloxane microsphere migration using a mussel-inspired polydopamine coating for potential application in injection therapy. PLoS One, 2017,12(11):e0186877.
[40]   Li Q, Sun L, Zhang L, et al. Polydopamine-collagen complex to enhance the biocompatibility of polydimethylsiloxane substrates for sustaining long-term culture of L929 fibroblasts and tendon stem cells. J Biomed Mater Res A, 2018,106(2):408-418.
doi: 10.1002/jbm.a.36254 pmid: 28971550
[41]   Xue P, Li Q, Li Y, et al. Surface modification of poly(dimethylsiloxane) with polydopamine and hyaluronic acid to enhance hemocompatibility for potential applications in medical implants or devices. ACS Applied Materials & Interfaces, 2017,9(39):33632-33644.
doi: 10.1021/acsami.7b10260 pmid: 28901742
[42]   Guo Q, Chen J, Wang J, et al. Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale, 2020,12(3):1307-1324.
doi: 10.1039/c9nr09780e pmid: 31907498
[43]   Kim R, Nam Y. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. Journal of Neural Engineering, 2015,12(2):026010.
doi: 10.1088/1741-2560/12/2/026010 pmid: 25738544
[44]   Hu Y, Dan W, Xiong S, et al. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold. Acta Biomater, 2017,47:135-148.
doi: 10.1016/j.actbio.2016.10.017 pmid: 27744068
[45]   Ryu J H, Lee Y, Kon W H G, et al. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules, 2011,12(7):2653-2659.
doi: 10.1021/bm200464x pmid: 21599012
[46]   Zhang H, Bré L P, Zhao T, et al. Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive. Biomaterials, 2014,35(2):711-719.
doi: 10.1016/j.biomaterials.2013.10.017 pmid: 24140046
[47]   Zhou S, Chang Q, Lu F, et al. Injectable mussel-inspired immobilization of platelet-rich plasma on microspheres bridging adipose micro-tissues to improve autologous fat transplantation by controlling release of PDGF and VEGF, angiogenesis, stem cell migration. Adv Healthc Mater, 2017,6(22). DOI: 10.1002/adhm.201700131.
doi: 10.1002/adhm.201700131 pmid: 28783874
[48]   Yang K, Lee J S, Kim J, et al. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 2012,33(29):6952-6964.
doi: 10.1016/j.biomaterials.2012.06.067 pmid: 22809643
[49]   Zhang Y, Wang F, Huang Q, et al. Layer-by-layer immobilizing of polydopamine-assisted ε-polylysine and gum Arabic on titanium: Tailoring of antibacterial and osteogenic properties. Mater Sci Eng C Mater Biol Appl, 2020,110:110690.
doi: 10.1016/j.msec.2020.110690 pmid: 32204005
[50]   Cheng C, Nie S, Li S, et al. Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem B, 2013,1:265-275.
doi: 10.1039/c2tb00025c pmid: 32260750
[51]   Sileika T S, Kim H D, Maniak P, et al. Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces, 2011,3:4602-4610.
doi: 10.1021/am200978h pmid: 22044029
[52]   Li F, Feng Y, Yang L, et al. A selective novel non-enzyme glucose amperometric biosensor based on lectin-sugar binding on thionine modified electrode. Biosens Bioelectron, 2011,26:2489-2494.
doi: 10.1016/j.bios.2010.10.040 pmid: 21126864
[53]   Reddy R, Reddy N. Biomimetic approaches for tissue engineering.Journal of Biomaterials Science, Polymer Edition, 2018,29(14):1667-1685.
doi: 10.1080/09205063.2018.1500084 pmid: 29998794
[54]   Han L, Jiang Y, Lv C, et al. Mussel-inspired hybrid coating functionalized porous hydroxyapatite scaffolds for bone tissue regeneration. Colloids Surf B Biointerfaces, 2019,179:470-478.
doi: 10.1016/j.colsurfb.2019.04.024 pmid: 31005742
[55]   Li Y, Yang W, Li X, et al. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. ACS Appl Mater Interfaces, 2015,7:5715-5724.
doi: 10.1021/acsami.5b00331 pmid: 25711714
[56]   Tan H C, Poh C K, Cai Y, et al. Covalently grafted BMP‐7 peptide to reduce macrophage/monocyte activity: an in vitro study on cobalt chromium alloy. Biotechnology and Bioengineering, 2013,110(3):969-979.
doi: 10.1002/bit.24756
[57]   Tsai W B, Chen W T, Chien H W, et al. Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering. Acta Biomater, 2011,7(12):4187-4194.
doi: 10.1016/j.actbio.2011.07.024 pmid: 21839186
[58]   Davoudi P, Assadpour S, Derakhshan M A, et al. Biomimetic modification of polyurethane-based nanofibrous vascular grafts: a promising approach towards stable endothelial lining. Mater Sci Eng C Mater Biol Appl, 2017,80:213-221.
doi: 10.1016/j.msec.2017.05.140 pmid: 28866159
[59]   Schendzielorz P, Rak K, Radeloff K, et al. A polydopamine peptide coating enables adipose-derived stem cell growth on the silicone surface of cochlear implant electrode arrays. J Biomed Mater Res, 2018,106:1431-1438.
doi: 10.1002/jbm.v106.4
[60]   Batul R, Tamanna T, Khaliq A, et al. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci, 2017,5(7):1204-1229.
doi: 10.1039/c7bm00187h pmid: 28594019
[61]   Park J, Brust T F, Lee H J, et al. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano, 2014,8(4):3347-3356.
doi: 10.1021/nn405809c pmid: 24628245
[62]   Lee H, Rho J, Messersmith P B. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater Weinheim, 2009,21(4):431-434.
doi: 10.1002/adma.v21:4
[63]   Fan H, Yu X, Liu Y, et al. Folic acid-polydopamine nanofibers show enhanced ordered-stacking via π-π interactions. Soft Matter, 2015,11(23):4621-4629.
doi: 10.1039/c5sm00732a pmid: 25959650
[64]   Yu X, Fan H, Wang L, et al. Formation of polydopamine nanofibers with the aid of folic acid. Angew Chem, 2014,53(46):12600-12604.
[65]   Wu C, Guan X, Xu J, et al. Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics. Biomaterials, 2019,205:106-119.
doi: 10.1016/j.biomaterials.2019.03.020 pmid: 30913486
[66]   Wu J, Cao L, Liu Y, et al. Functionalization of silk fibroin electrospun scaffolds via BMSC affinity peptide grafting through oxidative self-polymerization of dopamine for bone regeneration. ACS Appl Mater Interfaces, 2019,11(9):8878-8895.
doi: 10.1021/acsami.8b22123 pmid: 30777748
[67]   Lu X, Shi S, Li H, et al. Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives. Biomaterials, 2020,232:119719.
doi: 10.1016/j.biomaterials.2019.119719 pmid: 31901688
[1] ZHU Shuai,JIN Ming-jie,YANG Shu-lin. A Review on Applications of 3D Bioprinting in Cartilage Tissue Regeneration Engineering[J]. China Biotechnology, 2021, 41(5): 65-71.
[2] YU Xing-ge,LIN Kai-li. The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering[J]. China Biotechnology, 2020, 40(5): 69-77.
[3] WANG Yuan-dou,SU Feng,LI Su-ming. Research Progress of Photocrosslinked Hydrogel in Tissue Engineering[J]. China Biotechnology, 2020, 40(4): 91-96.
[4] LIU Zi-ru,ZHANG Tian. Research Progress of Polydopamine Modified Polymers in Nerve Repair[J]. China Biotechnology, 2020, 40(10): 57-64.
[5] Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering[J]. China Biotechnology, 2019, 39(6): 73-77.
[6] Xi KANG,Ai-peng DENG,Shu-lin YANG. Research Progress of Chitosan Based Thermosensitive Hydrogels[J]. China Biotechnology, 2018, 38(5): 79-84.
[7] XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering[J]. China Biotechnology, 2018, 38(12): 76-81.
[8] SUN Huai-yuan,SONG Xiao-kang,LIAO Yue-hua,LI Xiao-ou. The Application of Piezoelectric Micro-jetting Technology in the Field of Cell Bioprinting[J]. China Biotechnology, 2018, 38(12): 82-90.
[9] LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering[J]. China Biotechnology, 2017, 37(10): 111-117.
[10] LUO Si-shi, TANG Shun-qing. Research Progress of Agarose in Tissue Engineering[J]. China Biotechnology, 2015, 35(6): 68-74.
[11] WANG Dian-liang. Three-dimensional Construction of Tissue Organ and Concept of in situ Tissue Engineering[J]. China Biotechnology, 2014, 34(8): 112-116.
[12] WANG Dian-liang. Seed Cells[J]. China Biotechnology, 2014, 34(7): 108-113.
[13] WANG Dian-liang. The Birth and Development of Tissue Engineering[J]. China Biotechnology, 2014, 34(5): 122-129.
[14] ZHANG Zhi-qiang, HUANG Xiang-hua, ZHAO Lin-yuan. The Effects of Microenvironment on Cells and The Application of Bionics in Tissue Engineering Scaffolds[J]. China Biotechnology, 2014, 34(4): 101-109.
[15] WANG Dian-liang. Types and Applications of Tissue Engineering Products[J]. China Biotechnology, 2014, 34(11): 125-129.