Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (4): 91-96    DOI: 10.13523/j.cb.1910036
    
Research Progress of Photocrosslinked Hydrogel in Tissue Engineering
WANG Yuan-dou1,SU Feng1,2*,LI Su-ming3,*()
1 Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
2 College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
3 European Institute of Membranes, University of Montpellier, 34095 Montpellier Cedex, France
Download: HTML   PDF(392KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Due to the biocompatibility, degradability, and similarity to the structure of natural extracellular matrix, hydrogel has become a research hotspot and focus of tissue engineering. Based on in-situ formation and injectability, and compatibility with existing processing technologies (3D printing, electrospinning), photocrosslinked hydrogels are widely used in the field of tissue engineering. In this paper, recent advances in the field of tissue engineering in photocrosslinked hydrogels are reviewed, including new advances in cartilage, bone, adipose and periodontal tissues. The paper reviews the photocrosslinked hydrogels and provides relevant references for future research.



Key wordsPhotocrosslinked hydrogel      Tissue engineering      Cell scaffold     
Received: 22 October 2019      Published: 18 May 2020
ZTFLH:  Q819  
Corresponding Authors: Su-ming LI     E-mail: lisuming@hotmail.com
Cite this article:

WANG Yuan-dou,SU Feng,LI Su-ming. Research Progress of Photocrosslinked Hydrogel in Tissue Engineering. China Biotechnology, 2020, 40(4): 91-96.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1910036     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I4/91

化学名称 缩写 光源 可聚合单体 文献
1-[4-(2-羟基乙氧基)苯基]-2-羟基-2-甲基-1-丙酮 Irgacure 2959 紫外光 GelMA, MCS, n-armPEG-PCL-AC, SMH, Col-GMA, HA-MA, CLF [16] 、[20] 、[25] 、[26] 、[34] 、[35] 、[36] 、[37] 、[49] 、[50]
苯基-2,4,6-三甲基苯甲酰基次膦酸锂 LAP 紫外光,可见光 PEG-PCL-DA, GelMA, GelNB, GelSH [18] 、[21] 、[31] 、[41] 、[42] 、[43]
2',4',5',7'-四溴荧光素二钠盐 曙红Y 可见光 GelMA, PEGDA, PEGNB [13] 、[14] 、[19]
2-羟基-2-甲基苯丙酮 Irgacure 1173 紫外光 MCS, PEGDA, DMA, GelMA [15] 、[47]
核黄素 维生素B2 可见光 F-HA, MA-CMCS [17]
Table 1 Types of widely used photoinitiators and light sources
[1]   Liu M, Ishida Y, Ebina Y , et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature, 2015,517(7532):68-72.
doi: 10.1038/nature14060 pmid: 25557713
[2]   Atoufi Z, Kamrava S K, Davachi S M , et al. Injectable PNIPAM/hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study. International Journal of Biological Macromolecules, 2019,139:1168-1181.
doi: 10.1016/j.ijbiomac.2019.08.101 pmid: 31419553
[3]   赵正德, 陈振银, 张慧楠 , 等. 自组装短肽水凝胶支架三维培养环境对骨髓间充质干细胞生物学特性及心肌方向分化的影响. 中国生物工程杂志, 2017,37(11):45-51.
[3]   Zhao Z D, Chen Z Y, Zhang H N , et al. Effects of self-assembling peptide hydrogel scaffolds for three-dimensional culture on biological behavior and capability of myocardium differentiation in bone marrow mesenchymal stem cells. China Biotechnology, 2017,37(11):45-51.
[4]   Liu Y, Fan D . Novel hyaluronic acid-tyrosine/collagen-based injectable hydrogels as soft filler for tissue engineering. International Journal of Biological Macromolecules, 2019,141:700-712.
doi: 10.1016/j.ijbiomac.2019.08.233 pmid: 31473315
[5]   Solomevich S O, Bychkovsky P M, Yurkshtovich T L , et al. Biodegradable pH-sensitive prospidine-loaded dextran phosphate based hydrogels for local tumor therapy. Carbohydrate Polymers, 2019,226:115308.
doi: 10.1016/j.carbpol.2019.115308 pmid: 31582057
[6]   Su F, Wang Y, Liu X , et al. Biocompatibility and in vivo degradation of chitosan based hydrogels as potential drug carrier. Journal of Biomaterials Science, Polymer Edition, 2018,29(13):1515-1528.
doi: 10.1080/09205063.2017.1412244 pmid: 29745306
[7]   Ma Z, Ma R, Wang X , et al. Enzyme and pH-responsive 5-flurouracil (5-FU) loaded hydrogels based on olsalazine derivatives for colon-specific drug delivery. European Polymer Journal, 2019,118:64-70.
doi: 10.1016/j.eurpolymj.2019.05.017
[8]   Fan X, Yang L, Wang T , et al. pH-responsive cellulose-based dual drug-loaded hydrogel for wound dressing. European Polymer Journal, 2019,121:109290.
doi: 10.1016/j.eurpolymj.2019.109290
[9]   Xue H, Hu L, Xiong Y , et al. Quaternized chitosan-matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration. Carbohydrate Polymers, 2019,226:115302.
doi: 10.1016/j.carbpol.2019.115302 pmid: 31582049
[10]   董茂盛, 王佃亮 . 生物支架材料--组织工程连载之二. 中国生物工程杂志, 2014,34(06):122-127.
[10]   Dong M S, Wang D L . Biological scaffold materials. China Biotechnology, 2014,34(06):122-127.
[11]   王佃亮 . 组织器官三维构建及原位组织工程概念--组织工程连载之四. 中国生物工程杂志, 2014,34(8):112-116.
doi: 10.13523/j.cb.20140817 pmid: 29980862
[11]   Wang D L . Three-dimensional construction of tissue organ and concept of in situ tissue engineering. China Biotechnology, 2014,34(8):112-116.
doi: 10.13523/j.cb.20140817 pmid: 29980862
[12]   Ifkovits J L, Burdick J A . Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Engineering, 2007,13(10):2369-2385.
doi: 10.1089/ten.2007.0093 pmid: 17658993
[13]   Wang Z, Kumar H, Tian Z , et al. Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Applied Materials and Interfaces, 2018,10(32):26859-26869.
doi: 10.1021/acsami.8b06607 pmid: 30024722
[14]   Seeto W J, Tian Y, Pradhan S , et al. Rapid production of cell-laden microspheres using a flexible microfluidic encapsulation platform. Small, 2019,1902058.
doi: 10.1002/smll.201902058 pmid: 31468632
[15]   Bian S, Zheng Z, Liu Y , et al. A shear-thinning adhesive hydrogel reinforced by photo-initiated crosslinking as a fit-to-shape tissue sealant. Journal of Materials Chemistry B, 2019,7(42):6488-6499.
doi: 10.1039/c9tb01521c pmid: 31576899
[16]   Wu W, Ni Q, Xiang Y , et al. Fabrication of a photo-crosslinked gelatin hydrogel for preventing abdominal adhesion. RSC Advances, 2016,6(95):92449-92453.
doi: 10.1039/C6RA21435E
[17]   Han G D, Kim J W, Noh S H , et al. Potent anti-adhesion agent using a drug-eluting visible-light curable hyaluronic acid derivative. Journal of Industrial and Engineering Chemistry, 2019,70:204-210.
doi: 10.1016/j.jiec.2018.10.017
[18]   Xu C, Lee W, Dai G , et al. Highly elastic biodegradable single-network hydrogel for cell printing. ACS Applied Materials and Interfaces, 2018,10(12):9969-9979.
doi: 10.1021/acsami.8b01294 pmid: 29451384
[19]   Shih H, Liu H Y, Lin C C . Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine. Biomaterials Science, 2017,5(3):589-599.
doi: 10.1039/c6bm00778c pmid: 28174779
[20]   Hou P, Zhang N, Wu R , et al. Photo-cross-linked biodegradable hydrogels based on n-arm-poly (ethylene glycol), poly (ε-caprolactone) and/or methacrylic acid for controlled drug release. Journal of Biomaterials Applications, 2017,32(4):511-523.
doi: 10.1177/0885328217730465 pmid: 28899224
[21]   Fairbanks B D, Schwartz M P, Bowman C N , et al. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials, 2009,30(35):6702-6707.
doi: 10.1016/j.biomaterials.2009.08.055
[22]   Li L, Yu F, Zheng L , et al. Natural hydrogels for cartilage regeneration: modification, preparation and application. Journal of Orthopaedic Translation, 2019,17:26-41.
doi: 10.1016/j.jot.2018.09.003 pmid: 31194006
[23]   Yang J, Zhang Y S, Yue K , et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomaterialia, 2017,57:1-25.
doi: 10.1016/j.actbio.2017.01.036 pmid: 28088667
[24]   Levato R, Webb W R, Otto I A , et al. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomaterialia, 2017,61:41-53.
doi: 10.1016/j.actbio.2017.08.005 pmid: 28782725
[25]   Zhou Y, Liang K, Zhao S , et al. Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. International Journal of Biological Macromolecules, 2018,108:383-390.
doi: 10.1016/j.ijbiomac.2017.12.032 pmid: 29225174
[26]   Qi C, Liu J, Jin Y , et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials, 2018,163:89-104.
doi: 10.1016/j.biomaterials.2018.02.016 pmid: 29455069
[27]   Jia S J, Jing W, Zhang T , et al. Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Applied Materials and Interfaces, 2018,10:20296-22030.
doi: 10.1021/acsami.8b03445 pmid: 29808989
[28]   Yousefi A M, Hoque M E, Prasad R G S V , et al. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. Journal of Biomedical Materials Research Part A, 2015,103(7):2460-2481.
doi: 10.1002/jbm.a.35356 pmid: 25345589
[29]   Monzon M, Liu C.Z, Sara A , et al. Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds. Bio-Design and Manufacturing, 2018,1:69-75.
[30]   Shim J H, Jang K M, Hahn S K , et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication, 2016,8(1):014102.
doi: 10.1088/1758-5090/8/1/014102 pmid: 26844597
[31]   Liu J, Li L, Suo H , et al. 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Materials and Design, 2019,171:107708.
doi: 10.1016/j.matdes.2019.107708
[32]   Madrid A P M, Vrech S M, Sanchez M A , et al. Advances in additive manufacturing for bone tissue engineering scaffolds. Materials Science and Engineering: C, 2019,100:631-644.
doi: 10.1016/j.msec.2019.03.037
[33]   Turnbull G, Clarke J, Picard F , et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 2018,3(3):278-314.
doi: 10.1016/j.bioactmat.2017.10.001 pmid: 29744467
[34]   Zhang T, Chen H, Zhang Y , et al. Photo-crosslinkable, bone marrow-derived mesenchymal stem cells-encapsulating hydrogel based on collagen for osteogenic differentiation. Colloids and Surfaces B: Biointerfaces, 2019,174:528-535.
doi: 10.1016/j.colsurfb.2018.11.050 pmid: 30500741
[35]   Bae M S, Ohe J Y, Lee J B , et al. Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone, 2014,59:189-198.
doi: 10.1016/j.bone.2013.11.019
[36]   Kim S, Kang Y, Mercado-Pagán Á E , et al. In vitro evaluation of photo-crosslinkable chitosan-lactide hydrogels for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2014,102(7):1393-1406.
doi: 10.1002/jbm.b.33118 pmid: 24500890
[37]   Kim S, Bedigrew K, Guda T , et al. Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects. Acta Biomaterialia, 2014,10(12):5021-5033.
doi: 10.1016/j.actbio.2014.08.028
[38]   El-Sabbagh A H . Modern trends in lipomodeling. GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW, 2017,6.
doi: 10.3205/iprs000108 pmid: 28401032
[39]   Bellini E, Grieco M P, Raposio E . The science behind autologous fat grafting. Annals of Medicine and Surgery, 2017,24:65-73.
doi: 10.1016/j.amsu.2017.11.001 pmid: 29188051
[40]   Simonacci F, Bertozzi N, Grieco M P , et al. Procedure, applications, and outcomes of autologous fat grafting. Annals of Medicine and Surgery, 2017,20:49-60.
doi: 10.1016/j.amsu.2017.06.059 pmid: 28702187
[41]   Tytgat L, Vagenende M, Declercq H , et al. Synergistic effect of κ-carrageenan and gelatin blends towards adipose tissue engineering. Carbohydrate Polymers, 2018,189:1-9.
doi: 10.1016/j.carbpol.2018.02.002 pmid: 29580385
[42]   Tytgat L, Van D L, Van H J , et al. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Acta Biomaterialia, 2019,94:340-350.
doi: 10.1016/j.actbio.2019.05.062 pmid: 31136829
[43]   Tytgat L, Van D L, Arevalo M P O , et al. Extrusion-based 3D printing of photo-crosslinkable gelatin and κ-carrageenan hydrogel blends for adipose tissue regeneration. International Journal of Biological Macromolecules, 2019,140:929-938.
doi: 10.1016/j.ijbiomac.2019.08.124 pmid: 31422191
[44]   Aminu N, Chan S Y, Yam M F , et al. A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis. International Journal of Pharmaceutics, 2019,570:118659.
doi: 10.1016/j.ijpharm.2019.118659 pmid: 31493495
[45]   Ducret M, Montembault A, Josse J , et al. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dental Materials, 2019,35(4):523-533.
doi: 10.1016/j.dental.2019.01.018 pmid: 30712823
[46]   Huang C, Bao L, Lin T , et al. Proliferation and odontogenic differentiation of human umbilical cord mesenchymal stem cells and human dental pulp cells co-cultured in hydrogel. Archives of Oral Biology, 2019: 104582.
doi: 10.1016/j.archoralbio.2019.104582 pmid: 31605918
[47]   Monteiro N, Thrivikraman G, Athirasala A , et al. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Dental Materials, 2018,34(3):389-399.
doi: 10.1016/j.dental.2017.11.020 pmid: 29199008
[48]   Chichiricco P M, Riva R, Thomassin J M , et al. In situ photochemical crosslinking of hydrogel membrane for guided tissue regeneration. Dental Materials, 2018,34(12):1769-1782.
doi: 10.1016/j.dental.2018.09.017 pmid: 30336953
[49]   Zhao X, Lang Q, Yildirimer L , et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Advanced Healthcare Materials, 2016,5(1):108-118.
doi: 10.1002/adhm.201500005 pmid: 25880725
[50]   Zhao X, Sun X, Yildirimer L , et al. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomaterialia, 2017,49:66-77.
doi: 10.1016/j.actbio.2016.11.017 pmid: 27826004
[1] ZHU Shuai,JIN Ming-jie,YANG Shu-lin. A Review on Applications of 3D Bioprinting in Cartilage Tissue Regeneration Engineering[J]. China Biotechnology, 2021, 41(5): 65-71.
[2] YU Xing-ge,LIN Kai-li. The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering[J]. China Biotechnology, 2020, 40(5): 69-77.
[3] YAN Ge,QIAO Wei-hua,CAO Hong,SHI Jia-wei,DONG Nian-guo. Application of Surface Modification of Polydopamine in Tissue Engineering[J]. China Biotechnology, 2020, 40(12): 75-81.
[4] Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering[J]. China Biotechnology, 2019, 39(6): 73-77.
[5] Xi KANG,Ai-peng DENG,Shu-lin YANG. Research Progress of Chitosan Based Thermosensitive Hydrogels[J]. China Biotechnology, 2018, 38(5): 79-84.
[6] XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering[J]. China Biotechnology, 2018, 38(12): 76-81.
[7] SUN Huai-yuan,SONG Xiao-kang,LIAO Yue-hua,LI Xiao-ou. The Application of Piezoelectric Micro-jetting Technology in the Field of Cell Bioprinting[J]. China Biotechnology, 2018, 38(12): 82-90.
[8] LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering[J]. China Biotechnology, 2017, 37(10): 111-117.
[9] HUANG Wei-feng, CHENG Peng, JIANG Ping. A Comparative Study of Three Ways of Acellular Process on Small Intestinal Submucosa's Biocompatibility and Immunogenicity[J]. China Biotechnology, 2015, 35(6): 54-60.
[10] LUO Si-shi, TANG Shun-qing. Research Progress of Agarose in Tissue Engineering[J]. China Biotechnology, 2015, 35(6): 68-74.
[11] WANG Dian-liang. Three-dimensional Construction of Tissue Organ and Concept of in situ Tissue Engineering[J]. China Biotechnology, 2014, 34(8): 112-116.
[12] WANG Dian-liang. Seed Cells[J]. China Biotechnology, 2014, 34(7): 108-113.
[13] WANG Dian-liang. The Birth and Development of Tissue Engineering[J]. China Biotechnology, 2014, 34(5): 122-129.
[14] ZHANG Zhi-qiang, HUANG Xiang-hua, ZHAO Lin-yuan. The Effects of Microenvironment on Cells and The Application of Bionics in Tissue Engineering Scaffolds[J]. China Biotechnology, 2014, 34(4): 101-109.
[15] WANG Dian-liang. Types and Applications of Tissue Engineering Products[J]. China Biotechnology, 2014, 34(11): 125-129.