Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (6): 74-83    DOI: 10.13523/j.cb.2001020
    
Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation
XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji()
Key Laboratory of the Ministry of Education on Bio-engineering System, School of Chernical Engineering and Technology, Tianjin University, Synthetic Biology Platform of Tianjin Chemical Industry Collaborative Innovation Center, Tianjin 300072, China
Download: HTML   PDF(2045KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Quorum sensing is a special dynamic metabolic regulation mechanism. It is an environmental signal sensing system used by bacteria to monitor their own population densities. In recent years, with the vigorous development of synthetic biology, breakthroughs have also been made in the artificially synthesized flora and mixed bacteria co-culture technology based on stable flora relations. The quorum sensing system can achieve the purpose of autonomously controlling the relationship between bacteria and bacteria, and its research and application in metabolic engineering has received more and more attention. Based on the overview of quorum sensing, this paper summarizes the dynamic metabolic regulation of single bacteria based on quorum sensing; at the same time, research progress in the dynamic regulation of quorum sensing between Gram-negative and Gram-positive bacteria and co-cultivation is reviewed. In order to provide some suggestions and help for other quorum sensing applications.



Key wordsMetabolic engineering      Dynamic metabolic regulation      Quorum sensing      Flora relationship      Synthetic microbial consortia     
Received: 06 January 2020      Published: 23 June 2020
ZTFLH:  Q819  
Corresponding Authors: Hong-ji ZHU     E-mail: zhj@tju.edu.cn
Cite this article:

XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation. China Biotechnology, 2020, 40(6): 74-83.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2001020     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I6/74

分类 信号分子简称 表达蛋白 调节蛋白 产生菌株 文献
革兰氏阴性菌 3-oxo-C6-HSL LuxI LuxR 费氏弧菌V. fischeri [30]
C4-HSL RhlI RhlR 铜绿假单胞杆菌(Pseudomonas aeruginosa) [31]
3-O-C12-HSL LasI LasR 铜绿假单胞杆菌P. aeruginosa [31]
IV-HSL BjaI BjaR 缓生根瘤菌(Bradyrhizobium japonicum) [32]
3OH-C4-HSL LuxL/LuxM LuxN 哈维弧菌(Vibrio harveyi) [33]
p C-HSL RpaI RpaR 沼泽红假单胞菌(Rhodopseudomonas palustris) [34]
cinnamoyl-HSL BraI BraR 缓生根瘤菌 BTAi(Bradyrhizobium BTAi1) [35]
3-OH PAME PhcB PhcS 青枯雷尔氏菌(Ralstonia solanacearum) [36]
CAI-1 CqsA CqsS 霍乱弧菌(Vibrio cholerae) [37]
DSF RpfF RpfC 野油菜黄单胞菌(Xanthomonas campestris) [38]
革兰氏阳性菌 AgrD AgrB/D AgrC/A 金黄色葡萄球菌S. aureus [39]
Nisin NisA/B/C/P/T NisR/ K 乳酸如球菌L. lactis [40]
GBAP FsrD FsrA/C 肠球菌(Enterococcus faecalis) [41]
ComS ComA/B/C ComD/E 嗜热链球菌(Streptococcus thermophilus) [42]
subtilin SpaC/T/B SpaR/K 枯草芽孢杆菌(Bacillus subtilis) [43]
菌间信号 AI-2 LuxS/LsrB LuxP 多种 [25]
indole TnaA PykA/ DksA 多种 [28,44]
Table 1 Common quorum sensing systems
Fig.1 QS-based dynamic metabolic regulation mechanism of gram-negative bacteria (a) QS control ccdB expression (b) QS-based ON-OFF switch (c) QS-based toggle switch (d) QS induces 1,4-butanediol production (e) QS regulates myo-inositol synthesis
Fig.2 QS-based metabolic regulation among gram-negative bacteria (a) “Predator-Prey” system (b) “Activate-repression” system (c) Two QS orthogonal control systems (d) QS-based synthetic ecosystem with multiple interactions
Fig.3 QS-based metabolic regulation among gram-positive bacteria (a)Commensalism (b)Amensalism (c)Neutralism (d)Cooperation (e)Competition (f)Predation (g)L. lactis-E. faecalis synthetic flora (h)E. coli-B. megaterium synthetic flora
Fig.4 QS-based metabolic regulation among mixed bacteria (a) QS-based growth rate controller (b) QS-based one-step stable production system (c) QS-based dual-supply isopropanol production system
QS 机制 QS 来源 QS 应用菌种 代谢产物 成果 文献
lux V. fischeri E. coli 丝氨酸 最大理论生产率提高29.6% [46]
lux V. fischeri E. coli BW25113 异丙醇 产量与转化率分别提高了3倍和2.3倍 [47]
lux V. fischeri E. coli W3110 1,4-丁二醇 产量达到0.44g/L [48]
esa P. stewartii E. coli MG1655 肌醇
葡糖二酸
莽草酸
肌醇产量提高5倍;葡糖二酸产量由0提高到>0.8 g/L;莽草酸产量从0提高到>100 mg/L [49]
lux
esa
V. fischeri
P. stewartii
BL21(DE3) 柚皮素
水杨酸
柚皮素产量提升到463±1μM,水杨酸产量提高了1.8倍达到520±7 mg/L [50]
lux V. fischeri G. oxydans H24 维生素C 一步发酵稳定生产维生素C,2-KAG产量达到68.80±4.18 g/L [63]
lux V. fischeri E. coli BW25113 异丙醇 使用纤维二糖直接生产异丙醇 [64]
Table 2 List of applications of QS-based dynamic metabolic regulation strategies in metabolic engineering
[1]   Chae T U, Choi S Y, Kim J W , et al. Recent advances in systems metabolic engineering tools and strategies. Current Opinion Biotechnology, 2017,47:67-82.
[2]   Salis H M, Mirsky E A, Voigt C A . Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 2009,27(10):946-950.
pmid: 19801975
[3]   Chubukov V, Gerosa L, Kochanowski K , et al. Coordination of microbial metabolism. Nature Reviews Microbiology, 2014,12:327.
[4]   Soma Y, Fujiwara Y, Nakagawa T , et al. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose. Metabolic Engineering, 2017,43:54-63.
doi: 10.1016/j.ymben.2017.08.002 pmid: 28800966
[5]   Noor E, Eden E, Milo R , et al. Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Molecular Cell, 2010,39(5):809-820.
[6]   Dahl R H, Zhang F, Alonso-Gutierrez J , et al. Engineering dynamic pathway regulation using stress-response promoters. Nature Biotechnology, 2013,31(11):1039-1046.
pmid: 24142050
[7]   Gardner T S, Cantor C R, Collins J J . Construction of a genetic toggle switch in Escherichia coli. Nature, 2000,6767(403):339-342.
[8]   Elowitz M B, Leibler S . A synthetic oscillatory network of transcriptional regulators. Nature, 2000,403(6767):335-338.
[9]   Karl K, Uwe S, Victor C . Somewhat in control-the role of transcription in regulating microbial metabolic fluxes. Current Opinion in Biotechnology, 2013,24(6):987-993.
[10]   Soma Y, Tsuruno K, Wada M , et al. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metabolic Engineering, 2014,23(5):175-184.
[11]   Harder B J, Bettenbrock K, Klamt S . Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnology and Bioengineering, 2018,115(1):156-164.
doi: 10.1002/bit.26446 pmid: 28865130
[12]   Yin X, Shin H D, Li J , et al. Pgas, a low pH-induced promoter, as a dynamic gene expression control tool for the metabolic engineering of Aspergillus niger. Applied and Environmental Microbiology, 2017,83(6):e03222-16.
[13]   Liu D, Xiao Y, Evans B S , et al. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. Acs Synthetic Biology, 2015,4(2):132-140.
[14]   Xu P, Li L, Zhang F , et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(31):11299-11304.
[15]   Zhou L B, Zeng A P . Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in corynebacterium glutamicum. Acs Synthetic Biology, 2015,4(6):729-734.
doi: 10.1021/sb500332c pmid: 25575181
[16]   Vasilakou E, Machado D, Theorell A , et al. Current state and challenges for dynamic metabolic modeling. Current Opinion in Microbiology, 2016,33:97-104.
[17]   Xu P . Production of chemicals using dynamic control of metabolic fluxes. Current Opinion in Biotechnology, 2017,53:12-19.
[18]   Venayak N, Anesiadis N, Cluett W R , et al. Engineering metabolism through dynamic control. Current Opinion in Biotechnology, 2015,34:142-152.
doi: 10.1016/j.copbio.2014.12.022 pmid: 25616051
[19]   Wu S, Liu J, Liu C , et al. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cellular and Molecular Life Sciences, 2019.
[20]   Zeng W, Du P, Lou Q , et al. Rational design of an ultrasensitive quorum-sensing switch. ACS Synthetic Biology, 2017,6(8):1445-1452.
pmid: 28437094
[21]   Miller M B, Bassler B L . Quorum sensing in bacteria. Annual Review of Microbiology, 2000,55(1):165-199.
[22]   Utari P D, Vogel J, Quax W J . Deciphering physiological functions of AHL quorum quenching acylases. Frontiers in Microbiology, 2017,8:1123.
doi: 10.3389/fmicb.2017.01123
[23]   Abisado R G, Benomar S, Klaus J R , et al. Bacterial quorum sensing and microbial community interactions. Mbio, 2018,9(3):e01749-18.
[24]   Alkhatib Z, Abts A, Mavaro A , et al. Lantibiotics: how do producers become self-protected? Journal of Biotechnology, 2012,159(3):145-154.
pmid: 22329892
[25]   Pereira C S, Thompson J A, Xavier K B . AI-2-mediated signalling in bacteria. Fems Microbiology Reviews, 2013,37(2):156-181.
pmid: 22712853
[26]   Xavier K B, Bassler B L . Interference with AI-2-mediated bacterial cell-cell communication. Nature, 2005,437(7059):750-753.
doi: 10.1038/nature03960 pmid: 16193054
[27]   Keller L, Surette M G . Communication in bacteria: an ecological and evolutionary perspective. Nature Reviews Microbiology, 2006,4(4):249-258.
doi: 10.1038/nrmicro1383 pmid: 16501584
[28]   Lee J H, Wood T K, Lee J . Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol, 2015,23(11):707-718.
doi: 10.1016/j.tim.2015.08.001 pmid: 26439294
[29]   Lee J H, Lee J . Indole as an intercellular signal in microbial communities. FEMS Microbiology Reviews, 2010,34(4):426-444.
[30]   Egland K A, Greenberg E P . Quorum sensing in Vibrio fischeri: elements of the luxl promoter. Molecular Microbiology, 1999,31(4):1197-1204.
[31]   Sudha C, P. G E . An evolving perspective on the Pseudomonas aeruginosa orphan quorum sensing regulator QscR. Frontiers in Cellular and Infection Microbiology, 2014,4:152.
doi: 10.3389/fcimb.2014.00152 pmid: 25389523
[32]   Lindemann A, Pessi G, Schaefer A L , et al. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum. Proceedings of the National Academy of Sciences, 2011,108(40):16765-16770.
[33]   Bassler B L, Wright M, Showalter R E , et al. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Molecular Microbiology, 1993,9(4):773-786.
doi: 10.1111/j.1365-2958.1993.tb01737.x pmid: 8231809
[34]   Schaefer A L, Greenberg E P, Oliver C M , et al. A new class of homoserine lactone quorum-sensing signals. Nature, 2008,454(7204):595-599.
[35]   Ahlgren N A, Harwood C S, Schaefer A L , et al. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proceedings of the National Academy of Sciences, 2011,108(17):7183-7188.
[36]   Flavier A B, Clough S J, Schell M A , et al. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Molecular Microbiology, 1997,26(2):251-259.
[37]   Kelly R C, Bolitho M E, Higgins D A , et al. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. Nature Chemical Biology, 2009,5(12):891-895.
doi: 10.1038/nchembio.237 pmid: 19838203
[38]   Zhou L, Yu Y, Chen X , et al. The multiple DSF-family QS signals are synthesized from carbohydrate and branched-chain amino acids via the FAS elongation cycle. Scientific Reports, 2015,5:13294.
[39]   Monnet V, Juillard V, Gardan R . Peptide conversations in Gram-positive bacteria. Critical Reviews in Microbiology, 2016,42(3):339-351.
doi: 10.3109/1040841X.2014.948804 pmid: 25198780
[40]   Kleerebezem M . Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides, 2004,25(9):1405-1414.
doi: 10.1016/j.peptides.2003.10.021 pmid: 15374644
[41]   Nakayama J, Yokohata R, Sato M , et al. Development of a peptide antagonist against fsr quorum sensing of Enterococcus faecalis. Acs Chemical Biology, 2013,8(4):804-811.
[42]   Lin J, Zhu L, Lau G W . Disentangling competence for genetic transformation and virulence in Streptococcus pneumoniae. Current Genetics 2016,62(1):97-103.
doi: 10.1007/s00294-015-0520-z pmid: 26403231
[43]   Stein T, Borchert S, Kiesau P , et al. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Molecular Microbiology, 2002,44(2):403-416.
pmid: 11972779
[44]   Lee J H, Lee J . Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev, 2010,34(4):426-444.
[45]   You L, Cox R S, Weiss R , et al. Programmed population control by cell-cell communication and regulated killing. Nature, 2004,428(6985):868-871.
doi: 10.1038/nature02491 pmid: 15064770
[46]   Anesiadis N, Kobayashi H, Cluett W R , et al. Analysis and design of a genetic circuit for dynamic metabolic engineering. Acs Synthetic Biology, 2013,2(8):442-452.
doi: 10.1021/sb300129j pmid: 23654263
[47]   Soma Y, Hanai T . Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metabolic Engineering, 2015,30:7-15.
[48]   Liu H, Lu T . Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metabolic Engineering, 2015,29:135-141.
doi: 10.1016/j.ymben.2015.03.009 pmid: 25796335
[49]   Gupta A, Reizman I M B, Reisch C R , et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nature Biotechnology, 2017,35(3):273-279.
doi: 10.1038/nbt.3796 pmid: 28191902
[50]   Dinh C V, Prather K L J . Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli. Proceedings of the National Academy of Sciences, 2019,116(51):25562-25568.
[51]   Doong S J, Gupta A, Prather K L J . Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. Proceedings of the National Academy of Sciences, 2018,115(12):2964-2969.
[52]   Jones J A, Wang X . Use of bacterial co-cultures for the efficient production of chemicals. Current Opinion Biotechnology, 2017,53:33-38.
[53]   Liu X, Li X B, Jiang J , et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides. Metabolic Engineering, 2018,47:243-253.
doi: 10.1016/j.ymben.2018.03.016 pmid: 29596994
[54]   Zhang H, Wang X . Modular co-culture engineering, a new approach for metabolic engineering. Metabolic Engineering, 2016,37:114-121.
[55]   Balagaddé F K, Song H, Ozaki J , et al. A synthetic Escherichia coli predator-prey ecosystem. Molecular Systems Biology, 2008,4:187.
doi: 10.1038/msb.2008.24 pmid: 18414488
[56]   Chen Y, Kim J K, Hirning A J , et al. Emergent genetic oscillations in a synthetic microbial consortium. Science, 2015,349(6251):986-989.
doi: 10.1126/science.aaa3794 pmid: 26315440
[57]   Scott S R, Din M O, Bittihn P , et al. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis. Nature Microbiology, 2017,2:17083.
doi: 10.1038/nmicrobiol.2017.83 pmid: 28604679
[58]   Hu B, Du J, Zou R Y , et al. An environment-sensitive synthetic microbial ecosystem. PLoS One, 2010,5(5):e10619.
[59]   Kong W, Meldgin D R, Collins J J , et al. Designing microbial consortia with defined social interactions. Nature Chemical Biology, 2018,14(8):821-829.
[60]   Borrero J, Chen Y, Dunny G M , et al. Modified Lactic lcid bacteria detect and inhibit multiresistant enterococci. ACS Synthetic Biology, 2015,4(3):299-306.
pmid: 24896372
[61]   Nicholas M, Collins C H . Peptide-based communication system enables Escherichia coli to Bacillus megaterium interspecies signaling. Biotechnology & Bioengineering, 2013,110(11):3003-3012.
[62]   Stephens K, Pozo M, Tsao C Y , et al. Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition. Nature Communications, 2019,10(1):4129.
doi: 10.1038/s41467-019-12027-6 pmid: 31511505
[63]   Wang E-X, Liu Y, Ma Q , et al. Synthetic cell-cell communication in a three-species consortium for one-step vitamin C fermentation. Biotechnology Letters, 2019,41(8-9):951-961.
doi: 10.1007/s10529-019-02705-2 pmid: 31278569
[64]   Honjo H, Iwasaki K, Soma Y , et al. Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production. Metabolic Engineering, 2019,55:268-275.
doi: 10.1016/j.ymben.2019.08.007 pmid: 31401244
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[4] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[5] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[6] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[7] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[8] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[9] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[10] ZHAO Xiu-li, ZHOU Dan-dan, YAN Xiao-guang, WU Hao, CAIYIN Qing-gele, LI Yan-ni, QIAO Jian-jun. Regulation and Application in Metabolic Engineering of Bacterial Small RNAs[J]. China Biotechnology, 2017, 37(6): 97-106.
[11] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[12] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.
[13] GAO Cui-juan, LIN Carol Sze-ki, QI Qing-sheng. Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering[J]. China Biotechnology, 2016, 36(5): 53-58.
[14] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[15] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.