Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (5): 69-77    DOI: 10.13523/j.cb.1911018
    
The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering
YU Xing-ge1,LIN Kai-li2,**()
1 School&Hospital of Stomatology, Tongji University, Engineering Research Center of Toothrestoration and Regeneration, Shanghai 200072, China
2 Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
Download: HTML   PDF(710KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Natural hydrogels refers to hydrogels, as a kind of raw materials, are derived from natural biological materials. Because this kind of natural polymers contains natural components of life structures, and its biological and chemical properties are similar to those of natural tissues,it receives special attentions. Natural hydrogels are considered to be excellent biomimetic matrix materials in bone tissue engineering due to their high degree of similarity to extracellular matrix. Due to the poor mechanical properties and weak osteogenic induction properties, the natural hydrogels are usually modified by introducing other materials or bioactive factors to obtain a more suitable composite biomaterial for bone tissue engineering applications. The application of natural hydrogel——based biomaterials in bone tissue engineering are summarized. Also summaries the different application forms of injectable hydrogels, porous hydrogel scaffold, and 3D bioprinting hydrogel scaffold in recent years, in order to provide a reference for the application of such natural hydrogel-based biomaterials in future bone tissue engineering.



Key wordsNatural hydrogels      Bone tissue engineering      Injectable hydrogels      Porous scaffolds      3D bioprinting     
Received: 12 November 2019      Published: 02 June 2020
ZTFLH:  Q819  
Corresponding Authors: Kai-li LIN     E-mail: linkaili@tongji.edu.cn
Cite this article:

YU Xing-ge,LIN Kai-li. The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering. China Biotechnology, 2020, 40(5): 69-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1911018     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I5/69

Fig.1 Schematic diagram of injectable hydrogel for repairing bone defects
[1]   Zeng J H, Liu S W, Xiong L , et al. Scaffolds for the repair of bone defects in clinical studies: a systematic review. Journal of Orthopaedic Surgery and Research, 2018,13:33.
[2]   Wang W H, Yeung K W K . Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Materials, 2017,2(4):224-247.
[3]   Saha A K, Samaddar S, Kumar A , et al. A comparative study of orbital blow out fracture repair, using autogenous bone graft and alloplastic materials. Indian Journal of Otolaryngology and Head and Neck Surgery, 2019,71(4):542-549.
[4]   Leng Y, Yang F, Wang Q , et al. Material-based therapy for bone nonunion. Materials & Design, 2019,183:108161.
[5]   Ribas R G, Schatkoski V M, Montanheiro T L D , et al. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: A review. Ceramics International, 2019,45(17):21051-21061.
[6]   Beckstead B L, Sheng P, Bhrany A D , et al. Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials, 2005,26(31):6217-6228.
[7]   Langer R, Vacanti J P . Tissue engineering. Science, 2000,260(5110):920-926.
[8]   Hunt J A, Chen R, van Veen T , et al. Hydrogels for tissue engineering and regenerative medicine. Journal of Materials Chemistry B, 2014,2(33):5319-5338.
[9]   Jiang L, Wang Y J, Liu Z Q , et al. Three-dimensional printing and injectable conductive hydrogels for tissue engineering application. Tissue Engineering Part B-Reviews, 2019,25(5):398-411.
[10]   Qasim M, Chae D S, Lee N Y . Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. International Journal of Nanomedicine, 2019,14:4333-4351.
[11]   Min J H, Patel M, Koh W G . Incorporation of conductive materials into hydrogels for tissue engineering applications. Polymers, 2018,10(10):1078.
[12]   Bai X, Gao M Z, Syed S , et al. Bioactive hydrogels for bone regeneration. Bioactive Materials, 2018,3(4):401-417.
doi: 10.1016/j.bioactmat.2018.05.006
[13]   Peppasa N A, Leobandung W, Ichikawa H . Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2000,50(1):27-46.
doi: 10.1016/S0939-6411(00)00090-4
[14]   Wichterle O, LíM D . Hydrophilic gels for biological use. Nature, 1960,185(4706):117-118.
[15]   Jabbari E . Challenges for natural hydrogels in tissue engineering. Gels, 2019,5(2):30.
doi: 10.3390/gels5020030
[16]   Leon-Lopez A, Morales-Penaloza A, Martinez-Juarez V M , et al. Hydrolyzed collagen-sources and applications. Molecules, 2019,24(22):4031.
[17]   Fallacara A, Baldini E, Manfredini S , et al. Hyaluronic acid in the third millennium. Polymers, 2018,10(7):701.
[18]   Reakasame S, Boccaccini A R . Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecules, 2018,19(1):3-21.
[19]   Saravanan S, Vimalraj S, Thanikaivelan P , et al. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. International Journal of Biological Macromolecules, 2019,121:38-54.
[20]   Hong H, Fan H B, Chalamaiah M , et al. Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives. Food Chemistry, 2019,301:125222.
[21]   Gelse K, Poschl E, Aigner T . Collagens-structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 2003,55(12):1531-1546.
[22]   Rodriguez-Rodriguez R, Espinosa-Andrews H, Velasquillo-Martinez C , et al. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020,69(1):1-20.
[23]   Wang H A, Boerman O C, Sariibrahimoglu K , et al. Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase. Biomaterials, 2012,33(33):8695-8703.
[24]   Park H, Woo E K, Lee K Y . Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery. Journal of Controlled Release, 2014,196:146-153.
doi: 10.1016/j.jconrel.2014.10.008
[25]   Luetchford K A, Chaudhuri J B, de Bank P A . Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. Materials Science & Engineering. C, Materials for Biological Applications, 2020,106:110116.
[26]   Rogina A, Sandrk N, Teruel-Biosca L , et al. Bone-mimicking injectable gelatine/hydroxyapatite hydrogels. Chemical and Biochemical Engineering Quarterly, 2019,33(3):325-335.
[27]   Ozkizilcik A, Tuzlakoglu K . A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2014,8(3):242-247.
[28]   Chircov C, Grumezescu A M, Bejenaru L E . Hyaluronic acid-based scaffolds for tissue engineering. Romanian Journal of Morphology and Embryology, 2018,59(1):71-76.
[29]   Dicker K T, Gurski L A, Pradhan-Bhatt S , et al. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomaterialia, 2014,10(4):1558-1570.
[30]   Toole B P . Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews Cancer, 2004,4(7):528-539.
doi: 10.1038/nrc1391
[31]   Koroniak-Szejn K, Tomaszewska J, Grajewski J , et al. Long chain alkyl and fluoroalkyl glucose and glucosamine derivatives as hyaluronic acid subunits-Scaffolds for drug delivery. Journal of Fluorine Chemistry, 2019,219:98-105.
doi: 10.1016/j.jfluchem.2019.01.004
[32]   Bermejo-Velasco D, Azemar A, Oommen O P , et al. Modulating thiol pKa promotes disulfide formation at physiological pH: an elegant strategy to design disulfide crosslinked hyaluronic acid hydrogels. Biomacromolecules, 2019,20(3):1412-1420.
[33]   Roberts J J, Naudiyal P, Lim K S , et al. A comparative study of enzyme initiators for crosslinking phenol-functionalized hydrogels for cell encapsulation. Biomaterials Research, 2016,20(4):282-293.
[34]   Rizzuto F, Spikes J D . The eosin-sensitized photooxidation of substituted phenylalanines and tyrosines. Photochemistry Photobiology, 2010,25(5):465-476.
[35]   Gombotz W R, Wee S F J A D D R . Protein release from alginate matrices. Advanced Drug Delivery Reviews, 2012,64(3):194-205.
[36]   Kuo C K, Ma P X . Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001,22(6):511-521.
[37]   Lee K Y, Rowley J A, Eiselt P , et al. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules, 2000,33(11):4291-4294.
doi: 10.1021/ma9921347
[38]   Kuen Yong L, Bouhadir K H, Mooney D J . Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials, 2004,25(13):2461-2466.
doi: 10.1016/j.biomaterials.2003.09.030
[39]   Orive G, Ponce S, Hernandez R M , et al. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials, 2002,23(18):3825-3831.
doi: 10.1016/S0142-9612(02)00118-7
[40]   Lee J, Lee K Y . Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system. Pharmaceutical Research, 2009,26(7):1739-1744.
doi: 10.1007/s11095-009-9884-4
[41]   Lee K Y, Kong H J, Mooney D J . Quantifying interactions between cell receptors and adhesion ligand-modified polymers in solution. Macromolecular Bioscience, 2008,8(2):140-145.
doi: 10.1002/(ISSN)1616-5195
[42]   Elieh-Ali-Komi D, Hamblin M R . Chitin and chitosan: production and application of versatile biomedical nanomaterials. International Journal of Advanced Research, 2016,4(3):411-427.
[43]   Nishimura K, Nishimura S, Nishi N , et al. Immunological activity of chitin and its derivatives. Vaccine, 1984,2(1):93-99.
[44]   Martins A F, Vlcek J, Wigmosta T , et al. Chitosan/iota-carrageenan and chitosan/pectin polyelectrolyte multilayer scaffolds with antiadhesive and bactericidal properties. Applied Surface Science, 2020,502:144282.
[45]   Bano I, Arshad M, Yasin T , et al. Preparation, characterization and evaluation of glycerol plasticized chitosan/PVA blends for burn wounds. International Journal of Biological Macromolecules, 2019,124:155-162.
doi: 10.1016/j.ijbiomac.2018.11.073
[46]   Zhang E H, Xing R G, Liu S , et al. Advances in chitosan-based nanoparticles for oncotherapy. Carbohydrate Polymers, 2019,222:115004.
[47]   康肸, 邓爱鹏, 杨树林 . 壳聚糖基温敏水凝胶的研究进展. 中国生物工程杂志, 2018,38(5):79-84.
[47]   Kang X, Deng A P, Yang S L . Research progress of chitosan based thermosensitive hydrogels. China Biotechnology, 2018,38(5):79-84.
[48]   Georgiadis M, Muller R, Schneider P . Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. Journal of the Royal Society Interface, 2016,13(119):20160088.
[49]   Burger C, Zhou H W, Wang H , et al. Lateral packing of mineral crystals in bone collagen fibrils. Biophysical Journal, 2008,95(4):1985-1992.
doi: 10.1529/biophysj.107.128355
[50]   Amini A R, Laurencin C T, Nukavarapu S P . Bone tissue engineering: recent advances and challenges. Critical Reviews in Biomedical Engineering, 2012,40(5):363-408.
doi: 10.1615/CritRevBiomedEng.v40.i5
[51]   Lu S Y, Bai X, Liu H D , et al. An injectable and self-healing hydrogel with covalent cross-linking in vivo for cranial bone repair. Journal of Materials Chemistry B, 2017,5(20):3739-3748.
[52]   Bai X, Lu S Y, Cao Z , et al. Self-reinforcing injectable hydrogel with both high water content and mechanical strength for bone repair. Chemical Engineering Journal, 2016,288:546-556.
doi: 10.1016/j.cej.2015.12.021
[53]   Sanborn T J, Messersmith P B, Barron A E . In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII. Biomaterials, 2002,23(13):2703-2710.
doi: 10.1016/S0142-9612(02)00002-9
[54]   Lee D, Heo D N, Nah H R , et al. Injectable hydrogel composite containing modified gold nanoparticles: implication in bone tissue regeneration. International Journal of Nanomedicine, 2018,13:7019-7031.
doi: 10.2147/IJN
[55]   Yu P, Xie J, Chen Y , et al. A thermo-sensitive injectable hydroxypropyl chitin hydrogel for sustained salmon calcitonin release with enhanced osteogenesis and hypocalcemic effects. Journal of Materials Chemistry B, 2019,8(2):270-281.
[56]   Fenn S L, Oldinski R A . Visible light crosslinking of methacrylated hyaluronan hydrogels for injectable tissue repair. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2016,104(6):1229-1236.
doi: 10.1002/jbm.b.v104.6
[57]   Ding X C, Wang Y D . Weak bond-based injectable and stimuli responsive hydrogels for biomedical applications. Journal of Materials Chemistry B, 2017,5(5):887-906.
[58]   Kim S, Cui Z K, Kim P J , et al. Design of hydrogels to stabilize and enhance bone morphogenetic protein activity by heparin mimetics. Acta Biomaterialia, 2018,72:45-54.
[59]   Zhao L A, Weir M D, Xu H H K . An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials, 2010,31(25):6502-6510.
doi: 10.1016/j.biomaterials.2010.05.017
[60]   Qiu P C, Li M B, Chen K , et al. Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis. Biomaterials, 2020,227:119552.
doi: 10.1016/j.biomaterials.2019.119552
[61]   Mansouri N, SamiraBagheri . The influence of topography on tissue engineering perspective. Materials Science & Engineering C-Materials for Biological Applications, 2016,61:906-921.
[62]   Wang Y P, Qian J M, Zhao N , et al. Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering. Carbohydrate Polymers, 2017,167:44-51.
[63]   Sarker B, Li W, Zheng K , et al. Designing porous bone tissue engineering scaffolds with enhanced mechanical properties from composite hydrogels composed of modified alginate, gelatin, and bioactive glass. Acs Biomaterials Science & Engineering, 2016,2(12):2240-2254.
[64]   Zhao F H, Mc Garrigle M J, Vaughan T J , et al. In silico study of bone tissue regeneration in an idealised porous hydrogel scaffold using a mechano-regulation algorithm. Biomechanics and Modeling in Mechanobiology, 2018,17(1):5-18.
doi: 10.1007/s10237-017-0941-3
[65]   Vashisth P, Bellare J R . Development of hybrid scaffold with biomimetic 3D architecture for bone regeneration. Nanomedicine-Nanotechnology Biology and Medicine, Nanomedicine-Nanotechnology Biology and Medicine, 2018,14(4):1325-1336.
doi: 10.1016/j.nano.2018.03.011
[66]   Tellisi N, Ashammakhi N A, Billi F , et al. Three dimensional printed bone implants in the clinic. Journal of Craniofacial Surgery, 2018,29(8):2363-2367.
doi: 10.1097/SCS.0000000000004829
[67]   Chawla S, Midha S, Sharma A , et al. Silk-based bioinks for 3D bioprinting. Advanced Healthcare Materials, 2018,7(8):1701204.
doi: 10.1002/adhm.v7.8
[68]   Matai I, Kaur G, Seyedsalehi A , et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020,226:119536.
doi: 10.1016/j.biomaterials.2019.119536
[69]   Byambaa B, Annabi N, Yue K , et al. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Advanced Healthcare Materials, 2017,6(16):1700015.
doi: 10.1002/adhm.201700015
[70]   Rodriguez-Salvador M, Rio-Belver R M, Garechana-Anacabe G . Scientometric and patentometric analyses to determine the knowledge landscape in innovative technologies: The case of 3D bioprinting. PLoS One, 2017,12(6):e0180375.
doi: 10.1371/journal.pone.0180375
[71]   Keriquel V, Oliveira H, Remy M , et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Scientific Reports, 2017,7:1778.
doi: 10.1038/s41598-017-01914-x
[72]   Arrigoni C, Gilardi M, Bersini S , et al. Bioprinting and organ-on-chip applications towards personalized medicine for bone diseases. Stem Cell Reviews and Reports, 2017,13(3):407-417.
doi: 10.1007/s12015-017-9741-5
[73]   Ashammakhi N, Hasan A, Kaarela O , et al. Advancing frontiers in bone bioprinting. Advanced Healthcare Materials, 2019,8(7):1801048.
doi: 10.1002/adhm.v8.7
[74]   Gao G, Schilling A F, Yonezawa T , et al. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnology Journal, 2014,9(10):1304-1311.
doi: 10.1002/biot.201400305
[75]   Gibbs D M R, Vaezi M, Yang S F , et al. Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery. Regenerative Medicine, 2014,9(4):535-549.
doi: 10.2217/RME.14.20
[76]   Ozbolat I T, Hospodiuk M . Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 2016,76:321-343.
doi: 10.1016/j.biomaterials.2015.10.076
[77]   Placone J K, Engler A J . Recent advances in extrusion-based 3D printing for biomedical applications. Advanced Healthcare Materials, 2018,7(8):1701161.
doi: 10.1002/adhm.v7.8
[78]   Colosi C, Costantini M, Latini R , et al. Rapid prototyping of chitosan-coated alginate scaffolds through the use of a 3D fiber deposition technique. Journal of Materials Chemistry B, 2014,2(39):6779-6791.
doi: 10.1039/c4tb00732h
[79]   Dababneh A B, Ozbolat I T . Bioprinting technology: a current state-of-the-art review. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2014,136(6):061016.
doi: 10.1115/1.4028512
[80]   Ojansivu M, Rashad A, Ahlinder A , et al. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Biofabrication, 2019,11(3):035010.
doi: 10.1088/1758-5090/ab0692
[81]   Choe G, Oh S, Seok J M , et al. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Nanoscale, 2019,11(48):23275-23285.
doi: 10.1039/C9NR07643C
[82]   Filippi M, Dasen B, Guerrero J , et al. Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials, 2019,223:119468.
doi: 10.1016/j.biomaterials.2019.119468
[83]   Gladman A S, Matsumoto E A, Nuzzo R G , et al. Biomimetic 4D printing. Nature Materials, 2016,15(4):413-418.
doi: 10.1038/nmat4544
[84]   Ashammakhi N, Ahadian S, Fan Z J , et al. Advances and future perspectives in 4D bioprinting. Biotechnology Journal, 2018,13(12):1800148.
doi: 10.1002/biot.v13.12
[85]   Censi R, Schuurman W, Malda J , et al. A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering. Advanced Functional Materials, 2011,21(10):1833-1842.
doi: 10.1002/adfm.201002428
[86]   Ahadian S, Huyer L D, Estili M , et al. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomaterialia, 2017,52:81-91.
doi: 10.1016/j.actbio.2016.12.009
[87]   Giani G, Fedi S, Barbucci R . Hybrid magnetic hydrogel: a potential system for controlled drug delivery by means of alternating magnetic fields. Polymers, 2012,4(2):1157-1169.
doi: 10.3390/polym4021157
[88]   Echave M C, Domingues R, Gomez-Florit M , et al. Biphasic hydrogels integrating mineralized and anisotropic features for interfacial tissue engineering. ACS Applied Materials & Interfaces, 2019,11(51):47771-47784.
doi: 10.1021/acsami.9b17826
[89]   Gan D L, Wang Z X, Xie C M , et al. Mussel-inspired tough hydrogel with in situ nanohydroxyapatite mineralization for osteochondral defect repair. Advanced Healthcare Materials, 2019,8(22):1901103.
[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.