Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (7): 64-71    DOI: 10.13523/j.cb.20160710
    
Construct the Uracil Phosphoribosyl Transferase Gene Mutant Strain in Gluconobacter suboxydans for Seamless Genome Editing
DU Hong-yan, LI Tian-ming, LIU Jin-lei, FENG Hui-yong
College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Download: HTML   PDF(1001KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Gluconobacter suboxydans is an important industrial microbiology and can incompletely and efficiently oxidize a great variety of carbohydrates, alcohols and other polyols to form the corresponding aldehydes, ketones and organic acids and other products. The use of homologous recombination technology to transform genomic modification is an effective means of industrial breeding. There are many defects when use antibiotic marker as the screening marker in traditional methods. The construction of uracil phosphoribosyl transferase gene deletion strain is to achieve Gluconobacter suboxydans seamless genome editing. The suicide plasmid pMD18-Jqupp is transformed into wild type Gluconobacter suboxydans J12 and the mutant which knocked encoding uracil phosphoribosyl transferase gene was screened by tetracycline resistance and 5-fluorouracil. The physiological validation results show that the mutant strain can grow on medium containing 0.5mg/ml 5-fluorouracil, but the mutant covering upp gene can't grow on medium containing 0.5mg/ml 5-fluorouracil. It proves that the upp gene can be used as a negative selection marker in G.suboxydans-upp mutants to achieve Gluconobacter suboxydans genome modification and transformation by twice homologous recombination. It provides the foundation of changing Gluconobacter suboxydans to obtain valuable industrial strains using metabolic engineering in the future.



Key wordsGluconobacter suboxydans      Gene knockout      Scarless modify      Uracil phosphoribosyl transferase     
Received: 18 January 2016      Published: 16 March 2016
ZTFLH:  Q78  
Cite this article:

DU Hong-yan, LI Tian-ming, LIU Jin-lei, FENG Hui-yong. Construct the Uracil Phosphoribosyl Transferase Gene Mutant Strain in Gluconobacter suboxydans for Seamless Genome Editing. China Biotechnology, 2016, 36(7): 64-71.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160710     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I7/64

[1] De Ley J,Swings J,Gossele F.The Genus Gluconobacter.In:Krieg N R,Holt J G.Bergey's Manual of Systematic Bacteriology,Baltimore:Williams&Wilkins Co,1984:267-278.
[2] Deppenmeier U,Hoffmeister M,Prust C.Biochemistry and biotechnological applications of Gluconobacter strains.Applied and Molecular Biotechnology.2002,60(3):233-242.
[3] Reichstein T,Grü ssner A.Eine ergiebige synthese der 1-ascorbinsäure (C-vitamin).Helvetica Chimica Acta 1934,17(1):311-328.
[4] Michael S.Regioselective oxidation of aminosorbitol with Gluconobacter oxydans,key reaction in the industrial synthesis of 1-deoxynojirimycin syntheis.Journal of Psychiatry&Neuroscience Jpn,2004,29(5):364-382.
[5] Adachi O,Moonmangmee D,Toyama H,et al.New developments in oxidative fermentation.Applied and Molecular Biotechnology,2003,60(6):643-653.
[6] Liu P,Jenkins N A,Copeland N G.A highly efficient recombineering-based method for generating conditional knockout mutations.Genome Research,2003,13(3):476-484.
[7] 杨奇.大肠杆菌DH5α upp基因的敲除及其应用研究.南京:南京理工大学,环境与生物工程学院,2013.Yang Q.Knockout of the upp gene in Escherichia coli DH5α and its application research.Nanjing:Nanjing University of Science&Technology,Environmental and Biological Engineering,2013.
[8] Bailey J E.Toward a science of metabolic engineering.Science,1991,252(5013):1668-1675.
[9] 胡逢雪,丁锐,崔震海,等.大肠杆菌基因无痕敲除技术及策略.生物技术通讯,2013,24(4):552-557.Hu F X,Ding R,Cui Z H,et al.Approaches and strategies of gene scarless knockout in the Escherichia coli genome.Letters In Biotechnology,2013,24(4):552-557.
[10] Hasegawa N,Abeil M K,Yokoyama K,et al.Cyclophosphamide enhances antitumor efficacy of oncolytic adenovirus expressing uracil phosphoribosyltransferase (UPRT) in immunocompetent Syrian hamsters.International Journal of Cancer,2013,133(6):1479-1489.
[11] Andersen P S,Smith J M,Mygind B.Characterization of the upp gene encoding uracil phosphoribosyltransferase of Escherichia coli K12.Federation of European Biochemical Societies,1992,204(1):51-56.
[12] Tan Z G,Zhu X N,Chen J,et al.Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production.Applied and Environmental Microbiology,2013,79(16):4838-4844.
[13] Jantama K,Zhang X L,Moore J C,et al.Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.Biotechnology and Bioengineering,2008,101(5):881-893.
[14] Zhang X L,Jantama K,Moore J C,et al.Production of L-alanine by metabolically engineered Escherichia coli.Applied Genetics And Molecular Biotechnology,2007,77(2):355-366.
[15] Michael E K,Philip H E,Steve D H,et al.Four new derivatives of the broad-host-range cloning vector pBBR1MCS,carring different antibiotic-resistance cassettes.Gene,1995,166(1):175-176.
[16] Prust C,Hoffmeister M,Liesegang H,et al.Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans.Nature Biotechnology,2005,23(2):195-200.
[17] 余华,熊浚智,何晓梅,等.采用Red重组系统敲除铜绿假单胞菌弹性蛋白酶基因.中国人兽共患病学报,2013,2:129-132,137.Yu H,Xiong J Z,He X M,et al.Generation of a Pseudomonas aeruginosa elastase gene targeted deletion mutant by Red recombination system.Chinese Journal of Zoonoses,2013,2:129-132,137.
[18] Lim J H,Seo S W,Kim S Y,et al.Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli.Bioresource Technology,2013,135:568-573.
[19] Koresawa Y K,Miyagawa S J,Ikawa M H,et al.Synthesis of a new cre recombinase gene based on optimal codon usage for mammalian system.The Journal of Biochemistry,2000,127(3):367-372.
[20] Zhu D L,Zhao K,Xu H J,et al.Construction of thyA deficient Lactococcus lactis using the Cre-loxP recombination system.Annals of Microbiology,2015,66(3):1659-1665.
[21] Jager W,Schafer A,Puhler A,et al.Expression of the Bacillus subtilis SacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans.Journal of Bacteriology,1992,174(16):5462-5465.
[22] Hu F,Jiang X,Zhang J J,et al.Construction of an engineered strain capable of degrading two isomeric nitrophenols via a sacB-and gfp-based markerless integration system.Applied and Molecular Biotechnology,2014,98(10):4749-4756.
[23] Tan Y Z,Xu D Q,Li Y,et al.Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum.Plasmid,2012,67(1):44-52.

[1] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[2] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[3] WU Guo-guo,SONG Shu-ting,YUE Rong,ZHANG Jing,GUAN Ying,WANG Yue,LIU Bao-ai,LV Xue-min,WEI Jian-jun,ZHANG Hui-tu. Application of Counterseletable Gene upp in Genetic Manipulation of Streptomyces fungicidicus[J]. China Biotechnology, 2019, 39(11): 78-86.
[4] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.
[5] Chun-xiao SU,Xiao-yu ZHANG,Han ZENG,Ya-xi CHEN,Xiong-zhong RUAN,Ping YANG. Establishment and Identification of Liver-Specific CD36 Knockout Mice[J]. China Biotechnology, 2018, 38(8): 26-33.
[6] Yu-rui SHENG,Bin LI,Bin WANG,Di ZUO,Lin MA,Xiao-fan REN,Le GUO,Kun-mei LIU. The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells[J]. China Biotechnology, 2018, 38(10): 38-47.
[7] ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins[J]. China Biotechnology, 2017, 37(1): 38-45.
[8] HAN Hai hong, WANG Jun qing, WANG Teng fei, XIAO Jing, HAN Deng lan, WANG Rui ming. Method and Application of Gene Knockout Based Single Cross in Bacillus licheniformis 20085[J]. China Biotechnology, 2016, 36(11): 63-69.
[9] CHANG Yu-mei, HOU Zhan-ming . Research on Gene Knockout and Function of FgPDE1 in Fusarium graminearum[J]. China Biotechnology, 2015, 35(8): 59-67.
[10] SHEN Dong-ling, SHANG Shu-mei, LI Wei-na, YAN Jin-ping, HANGAN Ir-bis. Characterization of the Disrupted ack Genes on Fermentation by Thermoanaerobacterium calidifontis Rx1[J]. China Biotechnology, 2015, 35(7): 37-44.
[11] TAO Si-mei, ZHENG Wei, ZHAO Peng-chao, ZHOU Wei, QUAN Chun-shan, FAN Sheng-di. Effects of bmy Gene knockout on Hemolysis and Antifungal activity of Bacillus amyloliquefaciens Q-426[J]. China Biotechnology, 2014, 34(3): 56-60.
[12] YI Xiu-nan, LI Tian-ming, WANG Bei-chen, LIU Jin-lei, DU Hong-yan, FENG Hui-yong. Production of 2-Keto-D-Gluconic Acid by Metabolically Engineered Gluconobacter suboxydans[J]. China Biotechnology, 2014, 34(12): 97-106.
[13] GE Gao-shun, ZHANG Li-chao, ZHAO Xin, HU Xue-jun, LI Ya-jie. Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome[J]. China Biotechnology, 2014, 34(06): 68-74.
[14] YE Xiang-li, LI Da-li. Rapid Construction of GPR126 Conditional Gene-targeting Vector[J]. China Biotechnology, 2013, 33(4): 106-113.
[15] JIANG Na, WANG Yan-Chun, MA Zhi-Hong, LUO Lin, LIU Chun-Jie. A Novel Temperatrue Sensitive Plasmid-based Method for Deletion of Chromosomal Genes[J]. China Biotechnology, 2010, 30(03): 85-89.