Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (5): 65-71    DOI: 10.13523/j.cb.2011019
    
A Review on Applications of 3D Bioprinting in Cartilage Tissue Regeneration Engineering
ZHU Shuai,JIN Ming-jie,YANG Shu-lin()
School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
Download: HTML   PDF(471KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Self-repair is critical but limited on aged and damaged articular cartilages, and therefore, it is necessary to apply a suitable tissue engineering scaffold to promoting the repair and growth of the defective cartilage. 3D bioprinting can accurately distribute cell-bearing biological materials and construct complex three-dimensional living tissues or organs, and such technique becomes a hotspot in cartilage tissue engineering recently. The focus is on the latest progress of cartilage bioprinting in 3D bioprinting, including the selection of “ink” materials for cartilage bioprinting, the source of seed cells, and the development of 3D bioprinting technology. In addition, some limitations of the application of 3D bioprinting technology in tissue engineering are also explained, and its development and application in the field of cartilage repair are predicted.



Key words3D printing      Hydrogel      Tissue engineering      Cartilage     
Received: 09 November 2020      Published: 01 June 2021
ZTFLH:  Q819  
Corresponding Authors: Shu-lin YANG     E-mail: yangshulin@njust.edu.cn
Cite this article:

ZHU Shuai,JIN Ming-jie,YANG Shu-lin. A Review on Applications of 3D Bioprinting in Cartilage Tissue Regeneration Engineering. China Biotechnology, 2021, 41(5): 65-71.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2011019     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I5/65

生物材料 软骨修复能力 可打印性
琼脂糖[23] 软骨相容型 可在无支撑情况下打印
海藻酸盐[10] 软骨相容型 需要添加交联剂/增稠剂提高可打印性
硫酸藻酸盐[24] 软骨诱导型 需要利用智能交联的方法提高可打印性
甲基丙烯酸化明胶[17] 软骨相容型 需要添加交联剂/增稠剂提高可打印性
透明质酸[18] 软骨诱导型 需要添加交联剂/增稠剂提高可打印性
纤维蛋白[25] 软骨相容型 需要添加交联剂/增稠剂提高可打印性
胶原蛋白[26] 软骨相容型 胶原蛋白密度越高可打印性越好
聚乙二醇[21] 软骨相容型 需要添加交联剂/增稠剂提高可打印性
聚己内酯[22] 软骨相容型 可热熔融后打印
Table 1 Biomaterials for CTE
软骨细胞 间充质干细胞 胚胎干细胞
优点 来源广
提取简单
高软骨相容性
高增殖潜能
高分化潜能
免疫原性低、取材方便
增殖快
全能型
多能性
缺点 不具有分化潜能
增殖较慢
成本高
分化条件较复杂
伦理道德问题
分化方向难控制
Table 2 Cells for CTE
喷墨式生物打印 挤出式生物打印 激光辅助生物打印
成本 中等
适用黏度 中等 中等-高
成型时间 中等
细胞存活率 85% 40%~95% 95%
优势 低成本
易操作
高效率
可用于低黏度
材料打印
高细胞密度
高细胞存活率
适用黏度范围广
无喷头
高分辨率
高精度
高细胞密度
适用黏度范围广
(1~300 mPa/s)
劣势 适用材料有限
喷头易堵塞
低细胞密度
对细胞有潜在的
热损伤
分辨率有限
剪切力对细胞
的损伤
高成本
成型速度低
三维构建能力差
Table 3 3D printing methods for CTE
[1]   Murphy L, Helmick C G. The impact of osteoarthritis in the United States. American Journal of Nursing, 2012,112(3):S13-S19.
doi: 10.1097/01.NAJ.0000412646.80054.21
[2]   Jadin K D, Wong B L, Bae W C, et al. Depth-varying density and organization of chondrocytes in immature and mature bovine articular cartilage assessed by 3d imaging and analysis. The Journal of Histochemistry and Cytochemistry, 2005,53(9):1109-1119.
doi: 10.1369/jhc.4A6511.2005
[3]   Swieszkowski W, Tuan B H S, Kurzydlowski K J, et al. Repair and regeneration of osteochondral defects in the articular joints. Biomolecular Engineering, 2007,24(5):489-495.
pmid: 17931965
[4]   Prakash D, Learmonth D. Natural progression of osteo-chondral defect in the femoral condyle. The Knee, 2002,9(1):7-10.
doi: 10.1016/S0968-0160(01)00133-8
[5]   Henkel J, Woodruff M A, Epari D R, et al. Bone regeneration based on tissue engineering conceptions-A 21st century perspective. Bone Research, 2013,1(1):216-248.
doi: 10.4248/BR201303002
[6]   Ozbolat I T, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Transactions on Biomedical Engineering, 2013,60(3):691-699.
doi: 10.1109/TBME.2013.2243912
[7]   Chou D T, Wells D, Hong D, et al. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomaterialia, 2013,9(10):8593-8603.
doi: 10.1016/j.actbio.2013.04.016
[8]   Trachtenberg J E, Placone J K, Smith B T, et al. Extrusion-based 3D printing of poly(propylene fumarate) in a full-factorial design. ACS Biomaterials Science & Engineering, 2016,2(10):1771-1780.
[9]   Mandrycky C, Wang Z J, Kim K, et al. 3D bioprinting for engineering complex tissues. Biotechnology Advances, 2016,34(4):422-434.
doi: 10.1016/j.biotechadv.2015.12.011
[10]   Kesti M, Eberhardt C, Pagliccia G, et al. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Advanced Functional Materials, 2015,25(48):7406-7417.
doi: 10.1002/adfm.v25.48
[11]   Markstedt K, Mantas A, Tournier I, et al. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 2015,16(5):1489-1496.
doi: 10.1021/acs.biomac.5b00188 pmid: 25806996
[12]   Apelgren P, Amoroso M, Lindahl A, et al. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS One, 2017,12(12):e0189428. DOI: 10.1371/journal.pone.0189428.
doi: 10.1371/journal.pone.0189428
[13]   You F, Eames B F, Chen X B. Application of extrusion-based hydrogel bioprinting for cartilage tissue engineering. International Journal of Molecular Sciences, 2017,18(7):E1597.
[14]   Müller M, Becher J, Schnabelrauch M, et al. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication, 2015,7(3):035006.
doi: 10.1088/1758-5090/7/3/035006
[15]   Pescosolido L, Schuurman W, Malda J, et al. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules, 2011,12(5):1831-1838.
doi: 10.1021/bm200178w pmid: 21425854
[16]   Schuurman W, Levett P A, Pot M W, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromolecular Bioscience, 2013,13(5):551-561.
doi: 10.1002/mabi.201200471 pmid: 23420700
[17]   Costantini M, Idaszek J, Szöke K, et al. 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation. Biofabrication, 2016,8(3):035002.
doi: 10.1088/1758-5090/8/3/035002
[18]   Lam T, Dehne T, Krüger J P, et al. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2019,107(8):2649-2657.
doi: 10.1002/jbm.v107.8
[19]   Cui X F, Breitenkamp K, Finn M G, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A, 2012,18(11-12):1304-1312.
doi: 10.1089/ten.tea.2011.0543
[20]   Gao G F, Schilling A F, Hubbell K, et al. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnology Letters, 2015,37(11):2349-2355.
doi: 10.1007/s10529-015-1921-2
[21]   Zhu J M, Marchant R E. Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices, 2011,8(5):607-626.
doi: 10.1586/erd.11.27
[22]   Ruiz-Cantu L, Gleadall A, Faris C, et al. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Materials Science and Engineering: C, 2020,109:110578.
doi: 10.1016/j.msec.2019.110578
[23]   Ahn S, Lee H, Bonassar L J, et al. Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying. Biomacromolecules, 2012,13(9):2997-3003.
doi: 10.1021/bm3011352
[24]   Ahlfeld T, Cidonio G, Kilian D, et al. Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication, 2017,9(3):034103.
doi: 10.1088/1758-5090/aa7e96
[25]   Levato R, Visser J, Planell J A, et al. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication, 2014,6(3):035020.
doi: 10.1088/1758-5082/6/3/035020
[26]   Zhang Y S, Yue K, Aleman J, et al. 3D bioprinting for tissue and organ fabrication. Annals of Biomedical Engineering, 2017,45(1):148-163.
doi: 10.1007/s10439-016-1612-8
[27]   Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England Journal of Medicine, 1994,331(14):889-895.
pmid: 8078550
[28]   Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clinical Orthopaedics and Related Research, 2000, (374):212-234.
[29]   Qi C, Liu J, Jin Y, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials, 2018,163:89-104.
doi: 10.1016/j.biomaterials.2018.02.016
[30]   Koga H, Engebretsen L, Brinchmann J E, et al. Mesenchymal stem cell-based therapy for cartilage repair: a review. Knee Surgery, Sports Traumatology, Arthroscopy, 2009,17(11):1289-1297.
doi: 10.1007/s00167-009-0782-4
[31]   李敏, 孟祥璟, 张祥奎, 等. 水凝胶材料和间充质干细胞在组织工程中的应用进展. 中国生物医学工程学报, 2020,39(3):367-374.
[31]   Li M, Meng X J, Zhang X K, et al. Progress in application of hydrogels and mesenchymal stem cells in tissue engineering. Chinese Journal of Biomedical Engineering, 2020,39(3):367-374.
[32]   Huang J I, Kazmi N, Durbhakula M M, et al. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. Journal of Orthopaedic Research, 2005,23(6):1383-1389.
doi: 10.1016/j.orthres.2005.03.008.1100230621
[33]   Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis and Rheumatism, 2005,52(8):2521-2529.
pmid: 16052568
[34]   Shim J H, Jang K M, Hahn S K, et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication, 2016,8(1):014102.
doi: 10.1088/1758-5090/8/1/014102
[35]   Yamasaki A, Kunitomi Y, Murata D, et al. Osteochondral regeneration using constructs of mesenchymal stem cells made by bio three-dimensional printing in mini-pigs. Journal of Orthopaedic Research, 2019,37(6):1398-1408.
doi: 10.1002/jor.24206
[36]   Hwang N S, Varghese S, Zhang Z J, et al. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-Glycine-aspartate-modified hydrogels. Tissue Engineering, 2006,12(9):2695-2706.
doi: 10.1089/ten.2006.12.2695
[37]   Hwang N S, Varghese S, Elisseeff J. Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One, 2008,3(6):e2498. DOI: 10.1371/journal.pone.0002498.
doi: 10.1371/journal.pone.0002498
[38]   Bigdeli N, Karlsson C, Strehl R, et al. Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells (Dayton, Ohio), 2009,27(8):1812-1821.
doi: 10.1002/stem.v27:8
[39]   Nguyen D, Hägg D A, Forsman A, et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Scientific Reports, 2017,7:658.
doi: 10.1038/s41598-017-00690-y pmid: 28386058
[40]   Medvedev S P, Grigor’Eva E V, Shevchenko A I, et al. Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells and Development, 2011,20(6):1099-1112.
doi: 10.1089/scd.2010.0249 pmid: 20846027
[41]   Gudapati H, Yan J Y, Huang Y, et al. Alginate gelation-induced cell death during laser-assisted cell printing. Biofabrication, 2014,6(3):035022.
doi: 10.1088/1758-5082/6/3/035022
[42]   Xu T, Binder K W, Albanna M Z, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication, 2013,5(1):015001.
doi: 10.1088/1758-5082/5/1/015001
[43]   Johnson B N, Jia X F. 3D printed nerve guidance channels: computer-aided control of geometry, physical cues, biological supplements and gradients. Neural Regeneration Research, 2016,11(10):1568-1569.
pmid: 27904481
[44]   Johnson B N, Lancaster K Z, Zhen G H, et al. 3D printed anatomical nerve regeneration pathways. Advanced Functional Materials, 2015,25(39):6205-6217.
pmid: 26924958
[45]   Ozbolat I T, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 2016,76:321-343.
doi: 10.1016/j.biomaterials.2015.10.076
[46]   Jammalamadaka U, Tappa K. Recent advances in biomaterials for 3D printing and tissue engineering. Journal of Functional Biomaterials, 2018,9(1):E22.
[47]   Kang H W, Lee S J, Ko I K, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 2016,34(3):312-319.
doi: 10.1038/nbt.3413
[1] YUAN Xiao-jing,YIN Hai-meng,FAN Xiao-wei,HE Jun-lin,HAO Shi-lei,JI Jin-gou. Preparation and Wound Repair of Keratin/Sodium Alginate/Polyacrylamide Hydrogel Skin Dressing[J]. China Biotechnology, 2021, 41(8): 17-24.
[2] LIAN Jiang-ru,MA Wei-fang. Advances in the Application of DNA Hydrogels to the Rapid Detection of Environmental Samples[J]. China Biotechnology, 2021, 41(2/3): 107-115.
[3] YU Xing-ge,LIN Kai-li. The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering[J]. China Biotechnology, 2020, 40(5): 69-77.
[4] WANG Yuan-dou,SU Feng,LI Su-ming. Research Progress of Photocrosslinked Hydrogel in Tissue Engineering[J]. China Biotechnology, 2020, 40(4): 91-96.
[5] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[6] YAN Ge,QIAO Wei-hua,CAO Hong,SHI Jia-wei,DONG Nian-guo. Application of Surface Modification of Polydopamine in Tissue Engineering[J]. China Biotechnology, 2020, 40(12): 75-81.
[7] Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering[J]. China Biotechnology, 2019, 39(6): 73-77.
[8] Xi KANG,Ai-peng DENG,Shu-lin YANG. Research Progress of Chitosan Based Thermosensitive Hydrogels[J]. China Biotechnology, 2018, 38(5): 79-84.
[9] Si-teng DUAN,Guang-ran LI,Yi-yong MA,Yu-jia QIU,Yu LI,Wei WANG. Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF[J]. China Biotechnology, 2018, 38(4): 70-77.
[10] XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering[J]. China Biotechnology, 2018, 38(12): 76-81.
[11] SUN Huai-yuan,SONG Xiao-kang,LIAO Yue-hua,LI Xiao-ou. The Application of Piezoelectric Micro-jetting Technology in the Field of Cell Bioprinting[J]. China Biotechnology, 2018, 38(12): 82-90.
[12] LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering[J]. China Biotechnology, 2017, 37(10): 111-117.
[13] ZHANG Qing-fang, LIU Ru-ming, XIAO Jian-hui. Application of Hyaluronic Acid on the Cartilage Differentiation of Mesenchymal Stem Cells[J]. China Biotechnology, 2016, 36(6): 92-99.
[14] SHEN Peng-fei, WANG Bin, XIE Zi-kang, ZHENG Chong, QU Yu-xing. Effects of Cartilage Oligomeric Matrix Protein Overexpression on BMP-2 Induced Cell Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2016, 36(10): 1-7.
[15] LUO Si-shi, TANG Shun-qing. Research Progress of Agarose in Tissue Engineering[J]. China Biotechnology, 2015, 35(6): 68-74.