Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (10): 89-99    DOI: 10.13523/j.cb.2104035
    
Research and Strategies of Flavins-mediated Extracellular Electron Transfer
LI Yuan-yuan,LI Yan,CAO Ying-xiu(),SONG Hao
School of Chemical Engineering and Technology,Tianjin University,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education),Tianjin 300072,China
Download: HTML   PDF(1848KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Extracellular electron transfer is the process that electroactive microorganisms (EAMs) acquire energy from the environment by extending respiratory chains to external electron acceptors. Organism Shewanella oneidensis is widely used as a model to study emerging bioelectrochemical technologies, including microbial fuel cell (MFC), microbial electrosynthesis, as well as pollutant degradation in bioremediation. A previous study reported that almost all electrons generated by S. oneidensis were transmitted into acceptors relying on flavins, including flavin mononucleotide (FMN) and riboflavin (RF). What’s more, flavins-mediated extracellular electron transfer is the rate-limiting step in the process of electron transmission. However, flavins secreted by wild-type S. oneidensis are negligible, and the engineering modifications for S. oneidensis are limited, both of which seriously hinder the electrons transfer process, and enable the main bottleneck of restricting the electrons transmission. In this study, the regulatory factors of flavin synthesis were systematically demonstrated from the perspective of flavin biosynthesis and transcriptional regulation relying on the mechanisms of flavins-mediated electron transfer in S. oneidensis. Besides, the strategies utilizing metabolic engineering, synthetic biology and modification of electrode materials for improving flavins-mediated electron transfer in recent years were summarized. Further, it can be proposed that in the future, systematic research and expression tools can be utilized to accelerate the flavins-mediated extracellular electron transfer in EAMs.



Key wordsS.oneidensis      Riboflavin      Cytochrome      Extracellular electron transfer      Metabolic engineering     
Received: 21 April 2021      Published: 08 November 2021
ZTFLH:  Q819  
Corresponding Authors: Ying-xiu CAO     E-mail: caoyingxiu@tju.edu.cn
Cite this article:

LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer. China Biotechnology, 2021, 41(10): 89-99.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2104035     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I10/89

Fig.1 Mechanisms of extracellular electron transfer in S. oneidensis ET: electron transfer; OM: outer membrane; IM: inner membrane
Fig. 2 The role of flavins in extracellular electron transfer (a) Extracellular RF and FMN (b) RF and FMN serve as the electron shuttles to mediate the electron transfer (c) RF and FMN serve as the cytochrome-bound cofactors to mediate the electron transfer
Fig.3 The interaction between flavins and cytochromes in the van der Waals surface of the proteins (a) The docking of flavins to OmcA with the binding sites in heme 5 and heme 7 (b) The docking of flavins to MtrC with the binding sites in heme 1, heme 7, heme 9, and heme 4. The hemes colored in red and the flavins are colored in green
Fig. 4 Structure of flavins
Fig. 5 De novo synthesis pathway of flavins in S. oneidensis G6P, Glucose-6-phosphate; F6P, Fructose-6-phosphate; FBP, Fructose-1,6-bisphosphate; GAP, Glyceraldehyde-3-phosphate; 1,3-2PG, 1,3-diphosphoglycerate; PGA, 3-phosphoglycerate; 2PG, diphosphoglycerate; PEP, Phosphoenol-pyruvate; PYR, Pyruvate; Ru5P, Ribulose-5-phosphate; R5P, Ribose-5-phosphate; PS, phosphoserine; Ser, serine; Gly, glycine; PRPP, 5-phospho-α-D-ribosyl-1-pyrophosphate; PRA,5-phospho-α-D-ribosylamin; GAR, Glyceramide nucleotide enzyme; IMP, inosine 5'-mono-phosphate; XMP, xanthosine 5'-mono phosphate; GMP, guanosine 5'-mono-phosphate; GDP, guanosine 5'-di-phosphate; GTP, guanosine 5'-tri-phosphate; DARPP, 2,5-diamino-6-ribosyla-mino-4(3H)-pyrimidinone-5'-phosphate; ARPP, 5-amino-6-(5'-phosphoribosylamino)uracil; ArPP, 5-amino-6-(5'-phosphor-ibitylamino)uracil; DHPB, 3,4-dihydroxy-2-butanone 4-phosphate; DRL, 6,7-dimethyl-8-ribityl-lumazine; FMN, flavin mononucleotide; FAD, flavin adenine dinucleotide
Fig.6 Engineering strategies for enhancing flavin synthesis (a) The endogenous overexpression of rib operon and Mtr-reduced biosynthesis gene cluster in S. oneidensis (b) The optimization of promoters with different expression strengths for improving flavins productivity (c) The exogenous overexpression of rib operon from B. subtilis
Fig.7 Construction of microbial consortium for improved electricity generation (a) A synthetic microbial consortium containing exoelectrogen S. oneidensis MR-1 and RF producing strain B. subtilis (b) A synthetic fermenter-exoelectrogen (E. coli-S. oneidensis) microbial consortium (c) Three-species microbial consortium for power generation consisted of engineered E. coli, B. subtilis, and S. oneidensis
[1]   Beblawy S, Bursac T, Paquete C, et al. Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Molecular Microbiology, 2018, 109(5): 571-583.
doi: 10.1111/mmi.2018.109.issue-5
[2]   Chong G W, Karbelkar A A, El-Naggar M Y. Nature’s conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion. Current Opinion in Chemical Biology, 2018, 47: 7-17.
doi: 10.1016/j.cbpa.2018.06.007
[3]   Light S H, Su L, Rivera-Lugo R, et al. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 2018, 562(7725): 140-144.
doi: 10.1038/s41586-018-0498-z
[4]   Yang Y, Wu Y C, Hu Y D, et al. Engineering electrode-attached microbial consortia for high-performance xylose-fed microbial fuel cell. ACS Catalysis, 2015, 5(11): 6937-6945.
doi: 10.1021/acscatal.5b01733
[5]   Lin T, Ding W Q, Sun L M, et al. Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells. Nano Energy, 2018, 50: 639-648.
doi: 10.1016/j.nanoen.2018.05.072
[6]   Lovley D R. Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 2006, 4(7): 497-508.
pmid: 16778836
[7]   Rabaey K, Rozendal R A. Microbial electrosynthesis-revisiting the electrical route for microbial production. Nature Reviews Microbiology, 2010, 8(10): 706-716.
doi: 10.1038/nrmicro2422
[8]   Lu X, Liu Y R, Johs A, et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis bem. Environmental Science & Technology, 2016, 50(8): 4366-4373.
doi: 10.1021/acs.est.6b00401
[9]   Yang Y, Ding Y Z, Hu Y D, et al. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synthetic Biology, 2015, 4(7): 815-823.
doi: 10.1021/sb500331x pmid: 25621739
[10]   Torres C I, Marcus A K, Lee H S, et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews, 2010, 34(1): 3-17.
doi: 10.1111/j.1574-6976.2009.00191.x pmid: 19895647
[11]   Okamoto A, Nakamura R, Nealson K H, et al. Bound flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter. ChemElectroChem, 2014, 1(11): 1808-1812.
doi: 10.1002/celc.v1.11
[12]   Sydow A, Krieg T, Mayer F, et al. Electroactive bacteria-molecular mechanisms and genetic tools. Applied Microbiology and Biotechnology, 2014, 98(20): 8481-8495.
doi: 10.1007/s00253-014-6005-z pmid: 25139447
[13]   Watanabe K, Manefield M, Lee M, et al. Electron shuttles in biotechnology. Current Opinion in Biotechnology, 2009, 20(6): 633-641.
doi: 10.1016/j.copbio.2009.09.006 pmid: 19833503
[14]   Zhao J T, Li F, Cao Y X, et al. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnology Advances, 2020: 107682.DOI: 10.1016/j.biotechadv.2020.107682.
doi: 10.1016/j.biotechadv.2020.107682
[15]   Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer. PNAS, 2008, 105(10): 3968-3973.
doi: 10.1073/pnas.0710525105 pmid: 18316736
[16]   White G F, Edwards M J, Gomez-Perez L, et al. Mechanisms of bacterial extracellular electron exchange. Advances in Microbial Physiology, 2016, 68: 87-138.
doi: 10.1016/bs.ampbs.2016.02.002 pmid: 27134022
[17]   Gorby Y A, Yanina S McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS, 2006, 103(30): 11358-11363.
pmid: 16849424
[18]   Pirbadian S, Barchinger S E, Leung K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. PNAS, 2014, 111(35): 12883-12888.
doi: 10.1073/pnas.1410551111 pmid: 25143589
[19]   Lovley D R, Walker D J F. Geobacter protein nanowires. Frontiers in Microbiology, 2019, 10: 2078.
doi: 10.3389/fmicb.2019.02078 pmid: 31608018
[20]   Covington E D, Gelbmann C B, Kotloski N J, et al. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Molecular Microbiology, 2010, 78(2): 519-532.
doi: 10.1111/mmi.2010.78.issue-2
[21]   Okamoto A, Kalathil S, Deng X, et al. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Scientific Reports, 2014, 4: 5628.
doi: 10.1038/srep05628
[22]   Huang L Y, Tang J H, Chen M, et al. Two modes of riboflavin-mediated extracellular electron transfer in Geobacter uraniireducens. Frontiers in Microbiology, 2018, 9: 2886.
doi: 10.3389/fmicb.2018.02886
[23]   Okamoto A, Hashimoto K, Nealson K H. Flavin redox bifurcation as a mechanism for controlling the direction of electron flow during extracellular electron transfer. Angewandte Chemie (International Ed in English), 2014, 53(41): 10988-10991.
doi: 10.1002/anie.201407004
[24]   Xu S, Jangir Y, El-Naggar M Y. Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1. Electrochimica Acta, 2016, 198: 49-55.
doi: 10.1016/j.electacta.2016.03.074
[25]   Babanova S, Matanovic I, Cornejo J, et al. Outer membrane cytochromes/flavin interactions in Shewanella spp.-A molecular perspective. Biointerphases, 2017, 12(2): 021004.
doi: 10.1116/1.4984007
[26]   Liu S, Diao N, Wang Z W, et al. Modular engineering of the flavin pathway in Escherichia coli for improved flavin mononucleotide and flavin adenine dinucleotide production. Journal of Agricultural and Food Chemistry, 2019, 67(23): 6532-6540.
doi: 10.1021/acs.jafc.9b02646
[27]   Liu S, Hu W Y, Wang Z W, et al. Production of riboflavin and related cofactors by biotechnological processes. Microbial Cell Factories, 2020, 19: 31.
doi: 10.1186/s12934-020-01302-7
[28]   Xu F, Song X N, Sheng G P, et al. Sunlight-mediated degradation of methyl orange sensitized by riboflavin: roles of reactive oxygen species. Separation and Purification Technology, 2015, 142: 18-24.
doi: 10.1016/j.seppur.2014.12.031
[29]   Wang G L, Shi T, Chen T, et al. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis. Metabolic Engineering, 2018, 48: 138-149.
doi: 10.1016/j.ymben.2018.05.022
[30]   Wang G L, Bai L, Wang Z W, et al. Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. World Journal of Microbiology and Biotechnology, 2014, 30(6): 1893-1900.
doi: 10.1007/s11274-014-1611-6
[31]   Cao Y X, Song M Y, Li F, et al. A synthetic plasmid toolkit for Shewanella oneidensis MR-1. Frontiers in Microbiology, 2019, 10: 410.
doi: 10.3389/fmicb.2019.00410
[32]   Zhu Y B, Chen X, Chen T, et al. Over-expression of glucose dehydrogenase improves cell growth and riboflavin production in Bacillus subtilis. Biotechnology Letters, 2006, 28(20): 1667-1672.
doi: 10.1007/s10529-006-9143-2
[33]   Lin Z Q, Xu Z B, Li Y F, et al. Metabolic engineering of Escherichia coli for the production of riboflavin. Microbial Cell Factories, 2014, 13(1): 1-12.
doi: 10.1186/1475-2859-13-1
[34]   Bacher A, Eberhardt S, Fischer M, et al. Biosynthesis of vitaminb2(riboflavin). Annual Review of Nutrition, 2000, 20: 153-167.
pmid: 10940330
[35]   Shi S B, Shen Z, Chen X, et al. Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochemical Engineering Journal, 2009, 46(1): 28-33.
doi: 10.1016/j.bej.2009.04.008
[36]   Xu Z B, Lin Z Q, Wang Z W, et al. Improvement of the riboflavin production by engineering the precursor biosynthesis pathways in Escherichia coli. Chinese Journal of Chemical Engineering, 2015, 23(11): 1834-1839.
doi: 10.1016/j.cjche.2015.08.013
[37]   Kato T, Park E Y. Expression of alanine: glyoxylate aminotransferase gene from Saccharomyces cerevisiae in Ashbya gossypii. Applied Microbiology and Biotechnology, 2006, 71(1): 46-52.
doi: 10.1007/s00253-005-0124-5
[38]   García-Angulo V A. Overlapping riboflavin supply pathways in bacteria. Critical Reviews in Microbiology, 2017, 43(2): 196-209.
doi: 10.1080/1040841X.2016.1192578 pmid: 27822970
[39]   Dmytruk K V, Yatsyshyn V Y, Sybirna N O, et al. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metabolic Engineering, 2011, 13(1): 82-88.
doi: 10.1016/j.ymben.2010.10.005
[40]   Hou Y, Hossain G S, Li J H, et al. Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids. Biotechnology and Bioengineering, 2017, 114(9): 1928-1936.
doi: 10.1002/bit.v114.9
[41]   Serrano A, Sebastián M, Arilla-Luna S, et al. The trimer interface in the quaternary structure of the bifunctional prokaryotic FAD synthetase from Corynebacterium ammoniagenes. Scientific Reports, 2017, 7: 404.
doi: 10.1038/s41598-017-00402-6 pmid: 28341845
[42]   Pedrolli D, Langer S, Hobl B, et al. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. The FEBS Journal, 2015, 282(16): 3230-3242.
doi: 10.1111/febs.13226
[43]   Boumezbeur A H, Bruer M, Stoecklin G, et al. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis. Metabolic Engineering, 2020, 61: 58-68.
doi: 10.1016/j.ymben.2020.05.002
[44]   Takemoto N, Tanaka Y, Inui M, et al. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2014, 98(9): 4159-4168.
doi: 10.1007/s00253-014-5570-5
[45]   Shi T, Wang Y C, Wang Z W, et al. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microbial Cell Factories, 2014, 13: 101.
[46]   Wu C, Cheng Y Y, Li B B, et al. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1. Bioresource Technology, 2013, 136: 711-714.
doi: 10.1016/j.biortech.2013.02.072
[47]   Min D, Cheng L, Zhang F, et al. Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation. Environmental Science & Technology, 2017, 51(9): 5082-5089.
doi: 10.1021/acs.est.6b04640
[48]   McAnulty M J, Wood T K. YeeO from Escherichia coli exports flavins. Bioengineered, 2014, 5(6): 386-392.
doi: 10.4161/21655979.2014.969173 pmid: 25482085
[49]   Yong Y C, Yu Y Y, Yang Y, et al. Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin. Biotechnology and Bioengineering, 2013, 110(2): 408-416.
doi: 10.1002/bit.24732 pmid: 23007598
[50]   Liu T, Yu Y Y, Chen T, et al. A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity. Biotechnology and Bioengineering, 2017, 114(3): 526-532.
doi: 10.1002/bit.26094
[51]   Liu Y, Ding M Z, Ling W, et al. A three-species microbial consortium for power generation. Energy & Environmental Science, 2017, 10(7): 1600-1609.
[52]   Wang Q Q, Wu X Y, Yu Y Y, et al. Facile in situ fabrication of graphene/riboflavin electrode for microbial fuel cells. Electrochimica Acta, 2017, 232: 439-444.
doi: 10.1016/j.electacta.2017.03.008
[53]   Xu H D, Quan X C. Anode modification with peptide nanotubes encapsulating riboflavin enhanced power generation in microbial fuel cells. International Journal of Hydrogen Energy, 2016, 41(3): 1966-1973.
doi: 10.1016/j.ijhydene.2015.11.124
[54]   Zou L, Wu X, Huang Y H, et al. Promoting Shewanella bidirectional extracellular electron transfer for bioelectrocatalysis by electropolymerized riboflavin interface on carbon electrode. Frontiers in Microbiology, 2019, 9: 3293.
doi: 10.3389/fmicb.2018.03293
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[3] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[4] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[5] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[6] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[7] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[8] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[9] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[10] ZHANG Chen, CHEN Shao-hua, WU Wen-qian, ZHOU Jian-qin. Modifiation of Cytochrome c at the Level of Lysine Residues Mediated by Microbial Transglutaminase[J]. China Biotechnology, 2017, 37(9): 82-88.
[11] ZHAO Xiu-li, ZHOU Dan-dan, YAN Xiao-guang, WU Hao, CAIYIN Qing-gele, LI Yan-ni, QIAO Jian-jun. Regulation and Application in Metabolic Engineering of Bacterial Small RNAs[J]. China Biotechnology, 2017, 37(6): 97-106.
[12] WANG Ming-xuan, CHEN Hai-qin, GU Zhen-nan, CHEN Wei, CHEN Yong-quan. Expression, Purification of Mortierella alpina Δ9 Desaturase and Characterization of Its Cytochrome b5 Domain[J]. China Biotechnology, 2017, 37(3): 43-50.
[13] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[14] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.
[15] GAO Cui-juan, LIN Carol Sze-ki, QI Qing-sheng. Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering[J]. China Biotechnology, 2016, 36(5): 53-58.