Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (12): 18-23    DOI: 10.13523/j.cb.20191203
    
Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions
JING Jia-mei1,2,XUN Xin2,WANG Min1,PENG Ru-chao1,SHI Yi1,2,**()
1 Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
2 Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(1083KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The Lassa virus and the Machupo virus belong to the family of the Arenaviridae. They can cause human infection with high mortality and pose a threat to the public health. The arenavirus possesses a cap-snatching mechanism for transcription of viral genome, which is similar to that of other segmented negative-strand RNA viruses. This process involves cleavage of host mRNAs by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase, and the cap-binding by the C-terminal region which has not been verified in Mammarenavirus. To this end, the recombinant expression vectors for the C-terminal region of Lassa virus and Machupo virus polymerase were constructed. The recombinant proteins were expressed in E. coli and was found that the proteins can exist with different oligomerization forms in solution.The oligomerization features by negative staining electron microscopy also were characterized. Finally, initial crystals of the C-terminal of Lassa virus polymerase were obtained, which provides a foundation for further study of its three-dimensional structure and functional mechanism.



Key wordsLassa virus      Machupo virus      C-terminal region of polymerase      Expression and purification      Crystallization     
Received: 16 April 2019      Published: 15 January 2020
ZTFLH:  Q819  
Corresponding Authors: Yi SHI     E-mail: shiyi@im.ac.cn
Cite this article:

JING Jia-mei,XUN Xin,WANG Min,PENG Ru-chao,SHI Yi. Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions. China Biotechnology, 2019, 39(12): 18-23.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191203     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I12/18

Fig.1 Gel filtration chromatography and SDS-PAGE profiels of LASV-L-CTD(a) and MACV-L-CTD(b) 1 and 2 represent the locations of the UV absorption peak of the corresponding protein samples,respectively; M represent protein molecular weight standard
Fig.2 The results of ultracentrifuge experiments of LASV-L- CTD_2(a),LASV-L-CTD_3(b)and MACV-L-CTD_2(c)
Fig.3 Negative-stain micrographs of LASV-L- CTD_1(a)and MACV-L-CTD_1(b)
Fig.4 Micrograph of LASV-L-CTD crystals
[1]   Richmond J K, Baglole D J . Lassa fever: epidemiology, clinical features, and social consequences. BMJ, 2003,327(7426):1271-1275.
[2]   Patterson M, Grant A, Paessler S . Epidemiology and pathogenesis of Bolivian hemorrhagic fever. Curr Opin Virol, 2014,5:82-90.
[3]   Labudová M, Pastorek J, Pastoreková S . Lymphocytic choriomeningitis virus: ways to establish and maintain non-cytolytic persistent infection. Acta Virologica, 2016,60(1):15-26.
[4]   Kunz S, Borrow P, Oldstone M B . Receptor structure, binding, and cell entry of arenaviruses. Curr Top Microbiol Immunol, 2002,262:111-137.
[5]   Kunz S . Receptor binding and cell entry of Old World arenaviruses reveal novel aspects of virus-host interaction. Virology, 2009,387(2):245-249.
[6]   Pasqual G, Rojek J M, Masin M , et al. Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLoS Pathog, 2011,7(9):e1002232.
[7]   Radoshitzky S R, Abraham J, Spiropoulou C F , et al. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature, 2007,446(7131):92-96.
[8]   Fedeli C, Moreno H, Kunz S . Novel Insights into cell entry of emerging human pathogenic arenaviruses. J Mol Biol, 2018,430(13):1839-1852.
[9]   Fehling S K, Lennartz F, Strecker T . Multifunctional nature of the arenavirus RING finger protein Z. Viruses, 2012,4(11):2973-3011.
[10]   Urata S ,de la Torre J C. Arenavirus budding. Advances in Virology Virol, 2011,2011:180326.
[11]   Urata S, Yasuda J . Molecular mechanism of arenavirus assembly and budding. Viruses, 2012,4(10):2049-2079.
[12]   Ferron F ,Weber F,de la Torre J C,et al.Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res, 2017,234:118-134.
[13]   Morin B, Coutard B, Lelke M , et al. The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog, 2010,6(9):e1001038.
[14]   Wallat G D, Huang Q, Wang W , et al. High-resolution structure of the N-terminal endonuclease domain of the Lassa virus L polymerase in complex with magnesium ions. PLoS One, 2014,9(2):e87577.
[15]   Rosenthal M, Gogrefe N, Vogel D , et al. Structural insights into reptarenavirus cap-snatching machinery. PLoS Pathog, 2017,13(5):e1006400.
[16]   McLay L, Liang Y, Ly H . Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections. J Gen Virol, 2014,95(Pt 1):1-15.
[17]   Radoshitzky S R, Bao Y, Buchmeier M J , et al. Past, present, and future of arenavirus taxonomy. Arch Virol, 2015,160(7):1851-1874.
[18]   Das K, Arnold E . Negative-strand RNA virus L proteins: One machine, many activities. Cell, 2015,162(2):239-241.
[19]   Plotch S J, Bouloy M, Ulmanen I , et al. A unique cap(M7gpppxm)-dependent influenza virion endonuclease Cleaves Capped Rnas to generate the primers that initiate viral-Rna transcription. Cell, 1981,23(3):847-858.
[20]   Duijsings D, Kormelink R, Goldbach R . In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. EMBO J, 2001,20(10):2545-2452.
[21]   Pflug A, Guilligay D, Reich S , et al. Structure of influenza A polymerase bound to the viral RNA promoter. Nature, 2014,516(7531):355-360.
[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.