Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (11): 32-39    DOI: 10.13523/j.cb.2106049
    
Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae
XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei()
Key Lab of Science & Technology of Eco-textile (Ministry of Education), College of Chemistry & Chemical Engineering and Biotechnology,Donghua University, Shanghai 201620, China
Download: HTML   PDF(1422KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Heterologous expression of Vitreoscilla hemoglobin gene vgb in a variety of research and industrial fermentation bacteria can solve the problem of dissolved oxygen rate in high-density fermentation. Saccharomyces cerevisiae is a classic eukaryotic model and has an important application value in the fermentation industry. However, the impact of vgb in Saccharomyces cerevisiae on cell growth is unclear. In this study, a heterologous expression plasmid YEplac195-ADH1pr-vgb containing Vistreoscilla hemoglobin gene vgb was constructed with Adh1 as promoter, and transformed into Saccharomyces cerevisiae BY4741. Growth sensitivity test showed that the heterologous expression of vgb inhibited the growth of the strain in both fermentation and non fermentation carbon sources. Then, we found the accumulation of reactive oxygen species (ROS), the change of membrane permeability and lipid peroxidation in S. cerevisiae cells overexpressing vgb by DCFH-DA and PI staining and lipid peroxidation products assay. The results showed that the overexpression of vgb changed the oxidation state in cells, promoted the accumulation of reactive oxygen (ROS), and oxidative stress caused the growth inhibition of the strain.



Key wordsVitreoscilla hemoglobin      Saccharomyces cerevisiae      Growth inhibition      Oxidative stress     
Received: 28 June 2021      Published: 01 December 2021
ZTFLH:  Q819  
Corresponding Authors: Zhi-wei HUANG     E-mail: zhiweih@dhu.edu.cn
Cite this article:

XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae. China Biotechnology, 2021, 41(11): 32-39.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2106049     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I11/32

Primer Purpose Primer sequence Template
F1 vgb cloning AACTGCAGACCCTCATGTTAGACCAG pUC8:16
R1 GGGGTACCCAAGGCACACCTGAAGAC Process biochemistry 41 (2006)930-934
F2 ADH1 promoter ACGCCAAGCTTACCCTTTTTCCATTTGCCATC Genomic DNA
R2 GTCGACCTGCAGCATTGTATATGAGATAGTTGATTG
F3 vgb RT-PCR GATATGGGTCGCCAAGAAT Yeast cell with plasmids
R3 ATCTGCTTCCACTTGAATA
Table 1 PCR primers used to construct plasmid YEplac195-ADH1pr-vgb
Fig.1 The construction of YEplac195-ADH1pr-vgb and the expression in Saccharomyces cerevisiae (a) Map of plasmid YEplac195-ADH1pr-vgb (b) The verification of ADH1pr-vgb amplification fragment E. coli PCR; M:Molecular weight; 1:Negative control; 2,3:Positive clone (c) Semi-quantitative RT-PCR of transformed strain 1,2:Positive clone; 3,4:Negative control
Fig.2 Overespression of vgb inhibits cell growth under aerobic respiratory conditions (a) Growth sensitivity test of Saccharomyces cerevisiae under aerioxidation conditions (b) Growth curve of Saccharomyces cerevisiae under aerobic breathing conditions
Fig.3 Overespression of vgb inhibits cell growth under oxygen-free respiratory conditions (a) Growth sensitivity test of Saccharomyces cerevisiae in 2% glycerol (b) Growth sensitivity test of Saccharomyces cerevisiae in 2% ethanol
Fig.4 Overexpression of vgb promotes ROS accumulation in Saccharomyces cerevisiae (a) Fluorescent pictures of ROS accumutation in Saccharomyces cerevisiae without or with 1 mmol/L H2O2 (b) Fluorescence intensity of H2DCF-DA in Saccharomyces cerevisiae without or with 1mmol/L H2O2 * :P<0.05 or ** :P<0.01 vs the corresponding wild type strain (Con group), respectively; ## :P<0.01 vs the corresponding treated strain
Fig.5 Overexpression of vgb damages the integrity of cell membrane and causes intracellular lipid peroxidation (a) PI dyeing fluorescence picture and dyeing cell percentage quantitative picture in Saccharomyces cerevisiae without or with 1 mmol/L H2O2 ** :P<0.01 vs the corresponding wild type strain (Con group); ## :P<0.01 vs the corresponding untreated strain (b) TBRAS content in Saccharomyces cerevisiae without or with 1 mmol/L H2O2 ** :P<0.01 vs the corresponding wild type strain (Con group), respectively; ## :P<0.01 vs the corresponding untreated strain
[1]   秦华明, 梁世中, 周玲艳. 重组酵母菌的高密度发酵表达. 生命的化学, 2001, 21(5):439-441.
[1]   Qin H M, Liang S Z, Zhou L Y. High density fermentation expression of recombinant yeast. Chemistry of Life, 2001, 21(5):439-441.
[2]   陈洪章, 李佐虎. 酵母菌的高密度发酵. 工业微生物, 1998, 28(1):30-33.
[2]   Chen H Z, Li Z H. High density fermentation of yeast. Industrial Microbiology, 1998, 28(1):30-33.
[3]   Wu W B, Guo X L, Zhang M L, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnology and Applied Biochemistry, 2018, 65(3):476-483.
doi: 10.1002/bab.2018.65.issue-3
[4]   Bülow L, Holmberg N, Lilius G, et al. The metabolic effects of native and transgenic hemoglobins on plants. Trends in Biotechnology, 1999, 17(1):21-24.
pmid: 10098274
[5]   Isarankura-Na-ayudhya C, Panpumthong P, Tangkosakul T, et al. Shedding light on the role of Vitreoscilla hemoglobin on cellular catabolic regulation by proteomic analysis. International Journal of Biological Sciences, 2008, 4(2):71-80.
pmid: 18345284
[6]   Dikshit K L, Dikshit R P, Webster D A. Study of Vitreoscilla globin(vgb) gene expression and promoter activity in E. coli through transcriptional fusion. Nucleic Acids Research, 1990, 18(14):4149-4155.
pmid: 2198533
[7]   Khosla C, Curtis J E, Bydalek P, et al. Expression of recombinant proteins in Escherichia coli using an oxygen-responsive promoter. Bio/ Technology, 1990, 8(6):554-558.
[8]   Fang Z J, Kuang X, Zhang Y S, et al. A novel HAC1-based dual-luciferase reporter vector for detecting endoplasmic Reticulum stress and unfolded protein response in yeast Saccharomyces cerevisiae. Plasmid, 2015, 79:48-53.
doi: 10.1016/j.plasmid.2015.04.002
[9]   Fu Z J, Lu H, Zhu Z Y, et al. Combination of baicalein and Amphotericin B accelerates Candida albicans apoptosis. Biological & Pharmaceutical Bulletin, 2011, 34(2):214-218.
[10]   Huang Z W, Kuang X, Chen Z X, et al. Comparative studies of tri- and hexavalent chromium cytotoxicity and their effects on oxidative state of Saccharomyces cerevisiae cells. Current Microbiology, 2014, 68(4):448-456.
doi: 10.1007/s00284-013-0496-1
[11]   Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochemical Medicine, 1976, 15(2):212-216.
pmid: 962904
[12]   Chen W, Hughes D E, Bailey J E. Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae. Biotechnology Progress, 1994, 10(3):308-313.
pmid: 7764938
[13]   Liu M, Li S Q, Xie Y Z, et al. Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Applied Microbiology and Biotechnology, 2018, 102(3):1155-1165.
doi: 10.1007/s00253-017-8680-z
[14]   Anand A, Duk B T, Singh S, et al. Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. Biochemical Journal, 2010, 426(3):271-280.
doi: 10.1042/BJ20091417
[15]   Park K W, Kim K J, Howard A J, et al. Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. Journal of Biological Chemistry, 2002, 277(36):33334-33337.
doi: 10.1074/jbc.M203820200
[16]   Ramandeep, Hwang K W, Raje M, et al. Vitreoscilla hemoglobin: intracellular localization and binding TO membranes. Journal of Biological Chemistry, 2001, 276(27):24781-24789.
pmid: 11331274
[17]   Erenler S O, Gencer S, Geckil H, et al. Cloning and expression of the Vitreoscilla hemoglobin gene in Enterobacter aerogenes: effect on cell growth and oxygen uptake. Applied Biochemistry and Microbiology, 2004, 40(3):241-248.
doi: 10.1023/B:ABIM.0000025945.53332.74
[18]   Wang X T, Ding Y T, Gao X Y, et al. Promotion of the growth and plant biomass degrading enzymes production in solid-state cultures of Lentinula edodes expressing Vitreoscilla hemoglobin gene. Journal of Biotechnology, 2019, 302:42-47.
doi: 10.1016/j.jbiotec.2019.06.301
[19]   唐辉桂, 黄火清, 罗会颖, 等. 利用透明颤菌血红蛋白在低氧条件下提高毕赤酵母中植酸酶的表达. 中国农业科技导报, 2008, 10(3):84-89.
[19]   Tang H G, Huang H Q, Luo H Y, et al. Expression of bacterial hemoglobin with a low O2-induced promoter improves recombinant phytase production in Pichia pastoris. Journal of Agricultural Science and Technology, 2008, 10(3):84-89.
[20]   汪小锋, 孙永川, 申旭光, 等. 毕赤酵母中表达透明颤菌血红蛋白提高重组脂肪酶的表达. 生物工程学报, 2011, 27(12):1755-1764.
[20]   Wang X F, Sun Y C, Shen X G, et al. Expression of Vitreoscilla hemoglobin improves recombinant lipase production in Pichia pastoris. Chinese Journal of Biotechnology, 2011, 27(12):1755-1764.
[21]   Turanli-Yildiz B, Benbadis L, Alkim C, et al. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization. Journal of Bioscience and Bioengineering, 2017, 124(3):309-318.
doi: 10.1016/j.jbiosc.2017.04.012
[22]   Bülow L, Holmberg N, Lilius G, et al. The metabolic effects of native and transgenic hemoglobins on plants. Trends in Biotechnology, 1999, 17(1):21-24.
pmid: 10098274
[23]   Sánchez-Osorio I, Hernández-Martínez C A, Martínez-Antonio A. Quantitative modeling of the interplay between synthetic gene circuits and host physiology: experiments, results, and prospects. Current Opinion in Microbiology, 2020, 55:48-56.
doi: S1369-5274(20)30031-X pmid: 32220744
[24]   乔雪锋, 陆俊杰, 肖慈英, 等. 低氧诱导启动子PsADH2在毕赤酵母中的调控特性. 华东理工大学学报(自然科学版), 2013, 39(5):559-564, 577.
[24]   Qiao X F, Lu J J, Xiao C Y, et al. Regulation characteristics of hypoxia-induced PsADH2 promoter in Pichia pastoris. Journal of East China University of Science and Technology (Natural Science Edition), 2013, 39(5):559-564, 577.
[25]   Martínez-Fernández J A, Bravo D, Peirotén Á, et al. Bile-induced promoters for gene expression in Lactobacillus strains. Applied Microbiology and Biotechnology, 2019, 103(9):3819-3827.
doi: 10.1007/s00253-019-09743-w pmid: 30887172
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[3] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[4] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[5] Jun HUANG,Ren-zhi WU,Qi LU,Zhi-long LU. Research Progress on Xylose Transporters of Saccharomyces cerevisiae[J]. China Biotechnology, 2018, 38(2): 109-115.
[6] ZHANG Wei, LIU Duo, LI Bing-zhi, YUAN Ying-jin. Construction and Optimization of p-coumaric Acid Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2017, 37(9): 89-97.
[7] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[8] SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. Phytoferritin and the Response to Oxidative Stress[J]. China Biotechnology, 2017, 37(2): 121-126.
[9] HU Yan-zhen, WEI Jun-ying, LUO Guang-ming. Research on Glutathione-related Signaling Pathway in Liver Diseases[J]. China Biotechnology, 2015, 35(10): 72-77.
[10] JIN Chao, LIU Jie, JI Jing, WANG Gang, CAO Hai-yan, WU Jiang. Overexpression of LcCHYB to Enhance the Tolerance to Oxidative Stress of Eustoma Grandiflorum[J]. China Biotechnology, 2015, 35(1): 27-33.
[11] ZHAO Jing, LV Hui, Jiayinaguli·ZHUMABAI, SUN Su-rong. Construction of the Eukaryotic Expression Vector of PhLTP Gene and Its Primary Antitumor Effects in vitro and in vivo[J]. China Biotechnology, 2014, 34(8): 7-13.
[12] GAO Hai-ling, JI Jing, WANG Gang, WU Guang-xia, RONG Fei, GUAN Chun-feng, JIN Chao. Expression Studies of Ascorbate Peroxidase from Lycium chinense Mill. in E.coli and Yeast[J]. China Biotechnology, 2014, 34(7): 24-29.
[13] MA Pan, LIU Hong-tao, XU Qing-song, BAI Xue-fang, DU Yu-guang. Effects of Chitosan Oligosaccharides Attenuating Menadione-induced Injury in Macrophages[J]. China Biotechnology, 2011, 31(06): 18-21.
[14] HU Xiu-Li- Liu-Jian-Li- Cao-Xiang-Yu- Hou-Fang-Fang- Gao-Bing. Identification of a functional domain with in DHCR24 that is required for its Antioxidative function[J]. China Biotechnology, 2009, 29(05): 50-54.
[15] Sang-Soo KWAK Haeng-Soon LEE Xiao-Li Yang. Improving potato plants oxidative stress and salt tolerance by gene transfer both of Cu/Zn superoxide dismutase and ascorbate peroxidase[J]. China Biotechnology, 2008, 28(3): 25-31.