Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (12): 13-23    DOI: 10.13523/j.cb.2111014
    
Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize
HE Wei1,2,ZHU Lei1,2,LIU Xin-ze1,2,AN Xue-li1,2,3,**(),WAN Xiang-yuan1,2,3,**()
1 Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
Download: HTML   PDF(2428KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Maize is the largest cultivated grain crop in the world. To increase maize yield and meet human’s needs, genetic modification has become an effective breeding tool for maize improvement. Since commercial GM (genetically modified) maize was planted in the United States in 1996, genetic transformation has achieved a great success in developing commercialized GM maize. This article reviews the important steps during maize genetic transformation, summarizes the commercial development of transgenic maize varieties, and suggests the optimization of maize genetic transformation system, the safety of transgenic maize, and the commercial development of more GM maize varieties.



Key wordsMaize      Genetic transformation      Transgenic maize      Commercial development     
Received: 04 November 2021      Published: 13 January 2022
ZTFLH:  Q819  
Corresponding Authors: Xue-li AN,Xiang-yuan WAN     E-mail: xulian@ustb.edu.cn;wanxiangyuan@ustb.edu.cn
Cite this article:

HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize. China Biotechnology, 2021, 41(12): 13-23.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2111014     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I12/13

Fig.1 Schematic illustration of genetic transformation in maize
Fig.2 The mechanism of Cre/LoxP site-specific recombination system LB: T - DNA left border; RB: T-DNA right border; SMG: Selected marker gene; GOI: Gene of interest; Pro: Promoter; Cre: Cyclization recombination enzyme;LoxP: Locus of X(cross)-overinP1 site
Fig.3 The plant areas of global transgenic crop and corn from 1996 to 2019
Table 1 Transgenic maize events with commercial trademarks
[1]   Secchi S, Gassman P W, Jha M, et al. Potential water quality changes due to corn expansion in the Upper Mississippi River Basin. Ecological Applications, 2011, 21(4): 1068-1084.
doi: 10.1890/09-0619.1
[2]   Wallington T J, Anderson J E, Mueller S A, et al. Corn ethanol production, food exports, and indirect land use change. Environmental Science & Technology, 2012, 46(11): 6379-6384.
doi: 10.1021/es300233m
[3]   Que Q D, Elumalai S, Li X G, et al. Maize transformation technology development for commercial event generation. Frontiers in Plant Science, 2014, 5: 379.
[4]   刘允军, 贾志伟, 刘艳, 等. 玉米规模化转基因技术体系构建及其应用. 中国农业科学, 2014, 47(21): 4172-4182.
[4]   Liu Y J, Jia Z W, Liu Y, et al. Establishment and application of large-scale transformation systems for maize. Scientia Agricultura Sinica, 2014, 47(21): 4172-4182.
[5]   Gordon-Kamm W J, Spencer T M, Mangano M L, et al. Transformation of maize cells and regeneration of fertile transgenic plants. The Plant Cell, 1990, 2(7): 603-618.
pmid: 12354967
[6]   Fromm M E, Morrish F, Armstrong C, et al. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology, 1990, 8(9): 833-839.
[7]   Walters D A, Vetsch C S, Potts D E, et al. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Molecular Biology, 1992, 18(2): 189-200.
pmid: 1310057
[8]   Koziel M G, Beland G L, Bowman C, et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology, 1993, 11(2): 194-200.
[9]   王国英, 杜天兵, 张宏, 等. 用基因枪将Bt毒蛋白基因转入玉米及转基因植株再生. 中国科学 (B辑 化学 生命科学 地学), 1995, 25(1): 71-76, 113.
[9]   Wang G Y, Du T B, Zhang H, et al. Transform Bt insecticidal protein gene into maize by particle bombardments. Science in China, SerB, 1995, 25(1): 71-76, 113.
[10]   赵天永, 黄忠, 王国英, 等. 影响玉米基因枪转化效率的几个因素. 农业生物技术学报, 1997, 5(1): 37-41.
[10]   Zhao T Y, Huang Z, Wang G Y, et al. Factors influencing maize transformation by particle bombardments. Journal of Agricultural Biotechnology, 1997, 5(1): 37-41.
[11]   Vain P, McMullen M D, Finer J J. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Reports. 1993, 12(2): 84-88.
doi: 10.1007/BF00241940 pmid: 24202074
[12]   Zhang S, Williams-Carrier R, Lemaux P. Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Reports, 2002, 21(3): 263-270.
doi: 10.1007/s00299-002-0513-5
[13]   Shou H X, Frame B R, Whitham S A, et al. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Molecular Breeding, 2004, 13(2): 201-208.
doi: 10.1023/B:MOLB.0000018767.64586.53
[14]   Vain P. Thirty years of plant transformation technology development. Plant Biotechnology Journal, 2007, 5(2): 221-229.
doi: 10.1111/pbi.2007.5.issue-2
[15]   Pitzschke A, Hirt H. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. The EMBO Journal, 2010, 29(6): 1021-1032.
doi: 10.1038/emboj.2010.8
[16]   Brencic A, Winans S C. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiology and Molecular Biology Reviews, 2005, 69(1): 155-194.
pmid: 15755957
[17]   Gould J, Devey M, Hasegawa O, et al. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiology, 1991, 95(2): 426-434.
pmid: 16668001
[18]   Shen W H, Escudero J, Schläppi M, et al. T-DNA transfer to maize cells: histochemical investigation of beta-glucuronidase activity in maize tissues. PNAS, 1993, 90(4): 1488-1492.
pmid: 11607370
[19]   Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 1996, 14(6): 745-750.
pmid: 9630983
[20]   Zhao Z Y, Gu W N, Cai T S, et al. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Molecular Breeding, 2002, 8(4): 323-333.
doi: 10.1023/A:1015243600325
[21]   Frame B R, Shou H X, Chikwamba R K, et al. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiology, 2002, 129(1): 13-22.
doi: 10.1104/pp.000653
[22]   Frame B R, McMurray J M, Fonger T M, et al. Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Reports, 2006, 25(10): 1024-1034.
doi: 10.1007/s00299-006-0145-2
[23]   Frame B, Main M, Schick R, et al. Genetic transformation using maize immature zygotic embryos. Plant Embryo Culture, 2011, 710: 327-341. DOI: 10.1007/978-1-61737-988-8_22.
doi: 10.1007/978-1-61737-988-8_22
[24]   Vega J M, Yu W C, Kennon A R, et al. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Reports, 2008, 27(2): 297-305.
doi: 10.1007/s00299-007-0463-z
[25]   魏开发. 农杆菌介导的高效玉米遗传转化体系的建立. 遗传, 2009, 31(11): 1158-1170.
[25]   Wei K F. Establishment of high efficiency genetic transformation system of maize mediated by Agrobacterium tumefaciens. Hereditas, 2009, 31(11): 1158-1170.
[26]   Lee H, Zhang Z J. Agrobacterium-mediated transformation of maize (Zea mays) immature embryos. Cereal Genomics, 2014. DOI: 10.1007/978-1-62703-715-0_22.
doi: 10.1007/978-1-62703-715-0_22
[27]   Bhattacharjee S, Lee L Y, Oltmanns H, et al. IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. The Plant Cell, 2008, 20(10): 2661-2680.
doi: 10.1105/tpc.108.060467
[28]   Singh R K, Prasad M. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Protoplasma, 2016, 253(3): 691-707.
doi: 10.1007/s00709-015-0905-3
[29]   Lowe K, Wu E, Wang N, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell, 2016, 28(9): 1998-2015.
doi: 10.1105/tpc.16.00124
[30]   Mookkan M, Nelson-Vasilchik K, Hague J, et al. Selectable marker independent transformation of recalcitrant maize inbred B73 and Sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports, 2017, 36(9): 1477-1491.
doi: 10.1007/s00299-017-2169-1
[31]   Anand A, Bass S H, Wu E, et al. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Molecular Biology, 2018, 97(1-2): 187-200.
doi: 10.1007/s11103-018-0732-y
[32]   Yadava P, Abhishek A, Singh R, et al. Advances in maize transformation technologies and development of transgenic maize. Frontiers in Plant Science, 2016, 7: 1949.
[33]   Negrotto D, Jolley M, Beer S, et al. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Reports, 2000, 19(8): 798-803.
doi: 10.1007/s002999900187 pmid: 30754872
[34]   Wright M, Dawson J, Dunder E, et al. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Reports, 2001, 20(5): 429-436.
pmid: 24549451
[35]   Reed J, Privalle L, Powell M L, et al. Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cellular & Developmental Biology-Plant, 2001, 37(2): 127-132.
[36]   淡俊豪, 夏玉梅, 詹祎捷, 等. 植物转基因删除技术研究进展. 分子植物育种, 2021, 19(12): 4005-4013.
[36]   Dan J H, Xia Y M, Zhan Y J, et al. Advances on gene deletion technology in transgenic plant. Molecular Plant Breeding, 2021, 19(12): 4005-4013.
[37]   Liu F, Wang P D, Xiong X J, et al. Comparison of three Agrobacterium-mediated co-transformation methods for generating marker-free transgenic Brassica napus plants. Plant Methods, 2020, 16: 81.
doi: 10.1186/s13007-020-00628-y
[38]   祁永斌, 刘庆龙, 陆艳婷, 等. 转基因植物中删除选择标记基因的研究进展. 浙江农业学报, 2014, 26(5): 1387-1393.
[38]   Qi Y B, Liu Q L, Lu Y T, et al. Research progress of the selectable marker genes eliminated in the transgenic plants. Acta Agriculturae Zhejiangensis, 2014, 26(5): 1387-1393.
[39]   Tuteja N, Verma S, Sahoo R K, et al. Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern. Journal of Biosciences, 2012, 37(1): 167-197.
doi: 10.1007/s12038-012-9187-5
[40]   渠柏艳, 于海清, 韩兆雪, 等. 可去除选择标记的转Bt基因抗虫玉米研究. 分子植物育种, 2004, 2(5): 649-653.
[40]   Qu B Y, Yu H Q, Han Z X, et al. Study on Bt transgenic insect resistant maize with removable selective marker. Molecular Plant Breeding, 2004, 2(5): 649-653.
[41]   Zhang W, Subbarao S, Addae P, et al. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theoretical and Applied Genetics, 2003, 107(7): 1157-1168.
pmid: 14513214
[42]   Zou X P, Peng A H, Xu L Z, et al. Efficient auto-excision of a selectable marker gene from transgenic Citrus by combining the Cre/loxP system and ipt selection. Plant Cell Reports, 2013, 32(10): 1601-1613.
doi: 10.1007/s00299-013-1470-x
[43]   国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2021, 41(1): 114-119.
[43]   International Service for the Acquisition of Agri-biotech Applications. Global status of commercialized biotech/gm crops in 2019. China Biotechnology, 2021, 41(1): 114-119.
[44]   Kumar K, Gambhir G, Dass A, et al. Genetically modified crops: current status and future prospects. Planta, 2020, 251(4): 1-27.
doi: 10.1007/s00425-019-03297-x
[45]   Basu S K, Dutta M, Goyal A, et al. Is genetically modified crop the answer for the next green revolution? GM Crops, 2010, 1(2): 68-79.
[46]   Heck G R, Armstrong C L, Astwood J D, et al. Development and characterization of a CP4 EPSPS-based, glyphosate-tolerant corn event. Crop Science, 2005, 44(1): 329-339.
[47]   Castiglioni P, Warner D, Bensen R J, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiology, 2008, 147(2): 446-455.
doi: 10.1104/pp.108.118828 pmid: 18524876
[48]   Harrigan G G, Ridley W P, Miller K D, et al. The forage and grain of MON 87460, a drought-tolerant corn hybrid, are compositionally equivalent to that of conventional corn. Journal of Agricultural and Food Chemistry, 2009, 57(20): 9754-9763.
doi: 10.1021/jf9021515 pmid: 19778059
[49]   Wan X Y, Wu S W, Li X. Breeding with dominant genic male-sterility genes to boost crop grain yield in the post-heterosis utilization era. Molecular Plant, 2021, 14(4): 531-534.
doi: 10.1016/j.molp.2021.02.004
[50]   Hondred D, Young J K, Brink K, et al. Plant genomic DNA flanking SPT event and methods for identifying SPT event. United States, US2009210970(A1).[2021-11-04]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SOPD&dbname=SOPD2020&filename=US2009210970(A1)&uniplatform=NZKPT&v=fsWC8XkCK0_XqIWeKNCgvGr15zHumD-idX0Gd3fGL_43JIAGoWt-ZSwvSdXfaVMyAZGFu8TsdcY%3d.
[51]   Raruang Y, Omolehin O, Hu D, et al. Host induced gene silencing targeting Aspergillus flavus aflM reduced aflatoxin contamination in transgenic maize under field conditions. Frontiers in Microbiology, 2020, 11: 754. DOI: 10.3389/fmicb.2020.00754.
doi: 10.3389/fmicb.2020.00754 pmid: 32411110
[1] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[2] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[3] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[4] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[5] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[6] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[7] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[8] WANG You-hua,ZOU Wan-nong,LIU Xiao-qing,WANG Zhaohua,SUN Guo-qing. Global Patent Analysis and Technology Prospect of Genetically Modified Maize[J]. China Biotechnology, 2019, 39(12): 83-94.
[9] Ai-guo SU,Wei SONG,Shuai-shuai WANG,Jiu-ran ZHAO. Advance on Cytoplasmic Male Sterility and Fertility Restoration Genes in Maize[J]. China Biotechnology, 2018, 38(1): 108-114.
[10] Ting AN,Jing JI,Yu-rong WANG,Zhi-gang MA,Gang WANG,Qian LI,Dan YANG,Song-hao ZHANG. Analysis of the Transformation Efficiency and Induced Differentiation of Lilium brownii Scales[J]. China Biotechnology, 2018, 38(1): 25-31.
[11] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[12] You-hui TIAN,Xiang-yuan WAN. Cytobiology and Molecular Genetics Research Methods on Maize Anther Development[J]. China Biotechnology, 2018, 38(1): 88-99.
[13] SHI Li-ping, JI Jing, WANG Gang, JIN Chao, XIE Chao, DU Xi-long, GUAN Chung-feng, ZHANG Lie, LI Chen. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress[J]. China Biotechnology, 2016, 36(8): 31-37.
[14] ZHU Xue-rui, JI Jing, WANG Gang, MA Zhi-gang, YANG Dan, JIN Chao, LI Chen. Influence on the Conversion Efficiency of Induced Differentiation of Various Potato Tissues[J]. China Biotechnology, 2016, 36(10): 53-59.
[15] QIN Cui-xian, CHEN Zhong-liang, GUI Yi-yun, WANG Miao, ZHOU Jian-hui, LIAO Qing, LI Yang-rui, HUANG Dong-liang,. Optimization of Genetic Transformation System of Sugarcane Callus Mediated by Agrobacterium[J]. China Biotechnology, 2013, 33(9): 66-72.