Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (12): 4-12    DOI: 10.13523/j.cb.2111010
    
CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize
YANG Meng-bing1,2,JIANG Yi-lin1,2,ZHU Lei1,2,AN Xue-li1,2,3,**(),WAN Xiang-yuan1,2,3,**()
1 Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
Download: HTML   PDF(1433KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Due to their simplicity and high efficiency, CRISPR/Cas systems provide efficient tools for functional genomics and crop molecular breeding. In this review, we summarize the current developments of CRISPR/Cas genomic editing systems in plants and compare the differences between these systems and their derivative technologies. We review the applications of CRISPR/Cas9 editing technology in maize improvement focusing on yield, quality, disease resistance, abiotic stress resistance, male sterile line development and haploid induction. Finally, we discuss the future improvement of CRISPR/Cas systems and provide perspectives on prospect genome editing technologies.



Key wordsCRISPR/Cas systems      Genome editing      Plant genome      Genetic improvement of maize     
Received: 02 November 2021      Published: 13 January 2022
ZTFLH:  Q819  
Corresponding Authors: Xue-li AN,Xiang-yuan WAN     E-mail: xuelian@ustb.edu.cn;wanxiangyuan@ustb.edu.cn
Cite this article:

YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize. China Biotechnology, 2021, 41(12): 4-12.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2111010     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I12/4

比较项目 CRISPR/Cas9 CRISPR/Cas12 CRISPR/Cas13 单碱基编辑 引导编辑
分类 Class II Type II Class II Type V Class II Type VI CRISPR/Cas9衍生工具 CRISPR/Cas9衍生工具
核心元件 tracRNA、crRNA、
Cas9
crRNA、Cas12a或
Cas12b
crRNA、Cas13a、
Cas13b或Cas13d
胞嘧啶或腺嘌呤脱氨酶、UGI、nCas9、sgRNA nCas9、M-MLV逆转录酶、pegRNA
关键结构域 RuvC、HNH RuvC-like、 Nuc HEPN HNH RuvC
靶向核酸类型 dsDNA dsDNA ssRNA dsDNA dsDNA
靶位点 PAM序列的5'端2~3 nt处 PAM序列下游18 nt处 和23 nt处 靶标ssRNA,可非特异性切割ssRNA PAM序列上游的C或A(5~12碱基内) 单链缺口处
靶位点限制 PAM序列通常为NGG 严格的 PAM 序列“TTTV” 需识别或不需识别PFS序列 PAM序列通常为NGG 受PAM限制较小
编辑效率 较高 较高 较高
脱靶频率 较高 较高 较低
优势 载体构建简单,可实现多靶点编辑 适用于更多装载量小的载体系统,有利于DNA片段的定点插入和替换 可以特异性靶向切割病毒RNA和真核细胞中的内源RNA 可以实现精确的碱基替换 有效地产生精确的碱基替换、插入和缺失等突变
缺点 会对细胞基因组造成一定的损伤 低温下编辑效率低 具有非特异性切割活性,脱靶率较高 同一编辑系统对不同靶点的编辑效率差异较大 在植物中的编辑效率是极低和不稳定
Table 1 Comparison of CRISPR/Cas systems and the derivative technologies
Fig.1 The mechanisms of CRISPR/Cas9 and CRISPR/Cas12a genome editing systems PAM: Protospacer adjacent motif; RuvC, HNH: The nuclease domains of Cas9; DSB: Double strand break; NHEJ: Non-homologous end joining; HDR: Homology directed repair; blue module indicates Cas9 protein
Fig.2 General procedure of genome editing in maize based on CRISPR/Cas9 system
应用 靶标基因 基因功能 编辑方式 性状改良 参考文献
提高产量 ZmLG1 编码SBP转录因子类蛋白 碱基插入和缺失 减小叶夹角,提高种植密度 [30]
ZmCLE7 控制分生组织大小 碱基插入和缺失 行和籽粒产量增加 [31]
ZmFCP1
改善品质 ZmWx1 编码GBSS酶 碱基插入和缺失 糯玉米 [32]
ZmSh2 编码AGPase酶 碱基插入和缺失 甜玉米 [33]
增强抗逆性 ARGOS8 乙烯反应的负调节因子 片段插入 提高耐旱能力 [34]
ZmALS2 编码乙酰乳酸合成酶 碱基插入和缺失 抗除草剂 [35]
ZmALS1 编码乙酰乳酸合成酶 碱基替换 抗除草剂 [36]
ZmALS2
stiff1 编码F-box结构域蛋白 碱基缺失 提高茎秆强度,抗倒伏 [37]
GA20ox3 赤霉素生物合成相关基因 碱基插入和缺失 降低株高,抗倒伏 [38]
LOX3 编码脂氧合酶 碱基插入和缺失 抗玉米黑粉菌感染 [39]
调控开花时间 ZmPHYC1 编码玉米光敏色素蛋白 碱基插入和缺失 长日照条件表现为早花 [40]
ZmPHYC2
ZmCCT9 编码CCT转录因子 碱基缺失 长日照条件引起早开花 [41]
创制雄性不育系 MS26 编码细胞色素P450 碱基插入和缺失 花粉发育异常,雄性不育 [35]
MS45 编码异胡豆苷合成酶类似蛋白 碱基插入和缺失 花粉发育异常,雄性不育 [35]
ZmTMS5 编码RNase Z蛋白 碱基缺失 温敏雄性不育植株 [42]
ZmMS8 编码β-1,3-半乳糖基转移酶 碱基插入和缺失 花药发育异常,雄性不育 [43]
Dcl5 介导产生24 nt phasiRNA 碱基插入和缺失 温敏雄性不育植株 [44]
单倍体育种 ZmDMP 编码DUF679膜蛋白 碱基插入和缺失 诱导单倍体产生 [45]
ZmPLA1 编码磷脂酶A 碱基插入和缺失 诱导单倍体产生 [46]
多性状改良 - - 片段插入 多性状基因的聚合 [47]
Table 2 Applications of CRISPR/Cas9 technology in maize improvement
[1]   Maximiano M R, Távora F T P K, Prado G S, et al. CRISPR genome editing technology: a powerful tool applied to developing agribusiness. Journal of Agricultural and Food Chemistry, 2021, 69(23): 6379-6395.
doi: 10.1021/acs.jafc.1c01062 pmid: 34097395
[2]   Christian M, Cermak T, Doyle E L, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186(2): 757-761.
doi: 10.1534/genetics.110.120717 pmid: 20660643
[3]   Urnov F D, Rebar E J, Holmes M C, et al. Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 2010, 11(9): 636-646.
doi: 10.1038/nrg2842
[4]   González Castro N G, Bjelic J, Malhotra G, et al. Comparison of the feasibility, efficiency, and safety of genome editing technologies. International Journal of Molecular Sciences, 2021, 22(19): 10355.
doi: 10.3390/ijms221910355
[5]   Zhu H C, Li C, Gao C X. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 2020, 21(11): 661-677.
doi: 10.1038/s41580-020-00288-9
[6]   Barrangou R, Marraffini L A. CRISPR-cas systems: prokaryotes upgrade to adaptive immunity. Molecular Cell, 2014, 54(2): 234-244.
doi: 10.1016/j.molcel.2014.03.011 pmid: 24766887
[7]   Makarova K S, Wolf Y I, Alkhnbashi O S, et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 2015, 13(11): 722-736.
doi: 10.1038/nrmicro3569 pmid: 26411297
[8]   Makarova K S, Wolf Y I, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18(2): 67-83.
doi: 10.1038/s41579-019-0299-x pmid: 31857715
[9]   Biswas S, Zhang D B, Shi J X. CRISPR/Cas systems: opportunities and challenges for crop breeding. Plant Cell Reports, 2021, 40(6): 979-998.
doi: 10.1007/s00299-021-02708-2
[10]   Jinek M, Jiang F G, Taylor D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176): 1247997.
doi: 10.1126/science.1247997
[11]   Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829
[12]   Mali P, Yang L H, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
doi: 10.1126/science.1232033
[13]   Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
doi: 10.1126/science.1231143 pmid: 23287718
[14]   Shan Q W, Wang Y P, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 686-688.
doi: 10.1038/nbt.2650
[15]   Li J F, Norville J E, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688-691.
doi: 10.1038/nbt.2654
[16]   Nekrasov V, Staskawicz B, Weigel D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(8): 691-693.
doi: 10.1038/nbt.2655
[17]   Hille F, Richter H, Wong S P, et al. The biology of CRISPR-Cas: backward and forward. Cell, 2018, 172(6): 1239-1259.
doi: 10.1016/j.cell.2017.11.032
[18]   Butiuc-Keul A, Farkas A, Carpa R, et al. CRISPR-Cas system: the powerful modulator of accessory genomes in prokaryotes. Microbial Physiology, 2021: 1-16.
[19]   Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutation Research, 2011, 711(1-2): 61-72.
doi: 10.1016/j.mrfmmm.2011.02.005
[20]   Siebert R, Puchta H. Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. The Plant Cell, 2002, 14(5): 1121-1131.
doi: 10.1105/tpc.001727
[21]   Char S N, Neelakandan A K, Nahampun H, et al. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnology Journal, 2017, 15(2): 257-268.
doi: 10.1111/pbi.2017.15.issue-2
[22]   Zetsche B, Gootenberg J S, Abudayyeh O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3): 759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[23]   Shmakov S, Abudayyeh O O, Makarova K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular Cell, 2015, 60(3): 385-397.
doi: 10.1016/j.molcel.2015.10.008 pmid: 26593719
[24]   Bandyopadhyay A, Kancharla N, Javalkote V S, et al. CRISPR-Cas12a (Cpf1): a versatile tool in the plant genome editing tool box for agricultural advancement. Frontiers in Plant Science, 2020, 11: 584151.
doi: 10.3389/fpls.2020.584151
[25]   Banakar R, Schubert M, Collingwood M, et al. Comparison of CRISPR-Cas9/Cas12a ribonucleoprotein complexes for genome editing efficiency in the rice phytoene desaturase (OsPDS) gene. Rice, 2020, 13(1): 1-7.
doi: 10.1186/s12284-019-0361-3
[26]   Lee K, Zhang Y X, Kleinstiver B P, et al. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal, 2019, 17(2): 362-372.
doi: 10.1111/pbi.2019.17.issue-2
[27]   Kim H, Kim S T, Ryu J, et al. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications, 2017, 8: 14406.
doi: 10.1038/ncomms14406
[28]   Schindele A, Dorn A, Puchta H. CRISPR/Cas brings plant biology and breeding into the fast lane. Current Opinion in Biotechnology, 2020, 61: 7-14.
doi: S0958-1669(19)30060-6 pmid: 31557657
[29]   Endo A, Masafumi M, Kaya H, et al. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Scientific Reports, 2016, 6: 38169.
doi: 10.1038/srep38169
[30]   Li C X, Liu C L, Qi X T, et al. RNA-guided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnology Journal, 2017, 15(12): 1566-1576.
doi: 10.1111/pbi.2017.15.issue-12
[31]   Liu L, Gallagher J, Arevalo E D, et al. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nature Plants, 2021, 7(3): 287-294.
doi: 10.1038/s41477-021-00858-5
[32]   Qi X T, Wu H, Jiang H Y, et al. Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity. The Crop Journal, 2020, 8(3): 440-448.
doi: 10.1016/j.cj.2020.01.006
[33]   Wilson L M, Whitt S R, Ibáñez A M, et al. Dissection of maize kernel composition and starch production by candidate gene association. The Plant Cell, 2004, 16(10): 2719-2733.
doi: 10.1105/tpc.104.025700
[34]   Shi J R, Gao H R, Wang H Y, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 2017, 15(2): 207-216.
doi: 10.1111/pbi.2017.15.issue-2
[35]   Svitashev S, Schwartz C, Lenderts B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016, 7: 13274.
doi: 10.1038/ncomms13274 pmid: 27848933
[36]   Li Y M, Zhu J J, Wu H, et al. Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. The Crop Journal, 2020, 8(3): 449-456.
doi: 10.1016/j.cj.2019.10.001
[37]   Zhang Z H, Zhang X, Lin Z L, et al. A large transposon insertion in the stiff1 promoter increases stalk strength in maize. The Plant Cell, 2020, 32(1): 152-165.
doi: 10.1105/tpc.19.00486
[38]   Zhang J J, Zhang X F, Chen R R, et al. Generation of transgene-free semidwarf maize plants by gene editing of Gibberellin-Oxidase20-3 using CRISPR/Cas9. Frontiers in Plant Science, 2020, 11: 1048.
doi: 10.3389/fpls.2020.01048
[39]   Pathi K M, Rink P, Budhagatapalli N, et al. Engineering smut resistance in maize by site-directed mutagenesis of LIPOXYGENASE 3. Frontiers in Plant Science, 2020, 11: 543895.
doi: 10.3389/fpls.2020.543895
[40]   Li Q Q, Wu G X, Zhao Y P, et al. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnology Journal, 2020, 18(12): 2520-2532.
doi: 10.1111/pbi.v18.12
[41]   Huang C, Sun H Y, Xu D Y, et al. ZmCCT9 enhances maize adaptation to higher latitudes. PNAS, 2018, 115(2): E334-E341.
doi: 10.1073/pnas.1718058115
[42]   Li J, Zhang H W, Si X M, et al. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics, 2017, 44(9): 465-468.
doi: 10.1016/j.jgg.2017.02.002
[43]   Chen R R, Xu Q L, Liu Y, et al. Generation of transgene-free maize male sterile lines using the CRISPR/Cas9 system. Frontiers in Plant Science, 2018, 9: 1180.
doi: 10.3389/fpls.2018.01180
[44]   Teng C, Zhang H, Hammond R, et al. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nature Communications, 2020, 11: 2912.
doi: 10.1038/s41467-020-16634-6
[45]   Zhong Y, Liu C X, Qi X L, et al. Mutation of ZmDMP enhances haploid induction in maize. Nature Plants, 2019, 5(6): 575-580.
doi: 10.1038/s41477-019-0443-7 pmid: 31182848
[46]   Liu C X, Li X, Meng D X, et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Molecular Plant, 2017, 10(3): 520-522.
doi: 10.1016/j.molp.2017.01.011
[47]   Gao H R, Mutti J, Young J K, et al. Complex trait loci in maize enabled by CRISPR-Cas9 mediated gene insertion. Frontiers in Plant Science, 2020, 11: 535.
doi: 10.3389/fpls.2020.00535
[48]   Schoof H, Lenhard M, Haecker A, et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100(6): 635-644.
pmid: 10761929
[49]   Moreno M A, Harper L C, Krueger R W, et al. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes & Development, 1997, 11(5): 616-628.
doi: 10.1101/gad.11.5.616
[50]   Nelson O E, Rines H W. The enzymatic deficiency in the waxy mutant of maize. Biochemical and Biophysical Research Communications, 1962, 9(4): 297-300.
doi: 10.1016/0006-291X(62)90043-8
[51]   Gao H R, Gadlage M J, Lafitte H R, et al. Superior field performance of waxy corn engineered using CRISPR-Cas9. Nature Biotechnology, 2020, 38(5): 579-581.
doi: 10.1038/s41587-020-0444-0
[52]   Dong L, Qi X T, Zhu J J, et al. Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing. Plant Biotechnology Journal, 2019, 17(10): 1853-1855.
doi: 10.1111/pbi.13144 pmid: 31050154
[53]   Sharma P, Gayen D. Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance. Plant Cell Reports, 2021, 40(11): 2081-2095.
doi: 10.1007/s00299-021-02739-9
[54]   Matres J M, Hilscher J, Datta A, et al. Genome editing in cereal crops: an overview. Transgenic Research, 2021, 30(4): 461-498.
doi: 10.1007/s11248-021-00259-6
[55]   Buckler E S, Holland J B, Bradbury P J, et al. The genetic architecture of maize flowering time. Science, 2009, 325(5941): 714-718.
doi: 10.1126/science.1174276 pmid: 19661422
[56]   Jiang Y L, Li Z W, Liu X Z, et al. ZmFAR1 and ZmABCG26 regulated by microRNA are essential for lipid metabolism in maize anther. International Journal of Molecular Sciences, 2021, 22(15): 7916.
doi: 10.3390/ijms22157916
[57]   Jiang Y L, An X L, Li Z W, et al. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnology Journal, 2021, 19(9): 1769-1784.
doi: 10.1111/pbi.v19.9
[58]   Seguí-Simarro J M, Jacquier N M A, Widiez T. Overview of in vitro and in vivo doubled haploid technologies. Doubled Haploid Technology, 2021. DOI: 10.1007/978-1-0716-1315-3_1.
doi: 10.1007/978-1-0716-1315-3_1
[59]   Kelliher T, Starr D, Su X J, et al. One-step genome editing of elite crop germplasm during haploid induction. Nature Biotechnology, 2019, 37(3): 287-292.
doi: 10.1038/s41587-019-0038-x pmid: 30833776
[60]   Wang B B, Zhu L, Zhao B B, et al. Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Molecular Plant, 2019, 12(4): 597-602.
doi: 10.1016/j.molp.2019.03.006
[61]   Cho S W, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research, 2014, 24(1): 132-141.
doi: 10.1101/gr.162339.113
[62]   Ledford H. US regulation misses some GM crops. Nature, 2013, 500(7463): 389-390.
doi: 10.1038/500389a
[63]   Jones H D. Regulatory uncertainty over genome editing. Nature Plants, 2015, 1: 14011.
doi: 10.1038/nplants.2014.11 pmid: 27246057
[1] LI Xiao-fei, CAO Ying-xiu, SONG Hao. CRISPR/Cas9 System:A Recent Progress[J]. China Biotechnology, 2017, 37(10): 86-92.
[2] ZHU Shao-yi, GUAN Li-hong, LIN Jun-tang. CRISPR-Cas9 System and Its Applications in Disease Models[J]. China Biotechnology, 2016, 36(10): 79-85.
[3] LIU Rui-qi, WANG Wei-wei, WU Yong-yan, ZHAO Qiu-yun, WANG Yong-sheng, QING Su-zhu. Research Progress of CRISPR-Cas9 and Its Application in Gene Therapy[J]. China Biotechnology, 2016, 36(10): 72-78.
[4] LI Jia-xin, FENG Wei, WANG Zhi-gang, WANG Yan-feng. CRISPR/Cas9 System and Its Applications in Transgenic Animals[J]. China Biotechnology, 2015, 35(6): 109-115.
[5] PU Qiang, LUO Jia, SHEN Lin-yuan, LI Qiang, ZHANG Yi, ZHANG Shun-hua, ZHU Li. The Advance and Application of CRISPR/Cas9 Mediated Genome Editing Technique[J]. China Biotechnology, 2015, 35(11): 77-84.
[6] ZHANG Qiao-Juan, ZHANG Yan-Qiong, LIU Chang-Bai. TALEN:A New Genome Site-specific Editing Technology[J]. China Biotechnology, 2014, 34(7): 76-80.
[7] XIE Ke, RAO Li-qun, LI Hong-wei, AN Xue-li, FANG Cai-chen, WAN Xiang-yuan. Research Progress of Genome Editing in Plants[J]. China Biotechnology, 2013, 33(6): 99-104.
[8] LIU Si-ye, XIA Hai-bin. A New Targeted Gene Editing Technology Mediated by CRISPR-Cas System[J]. China Biotechnology, 2013, 33(10): 117-123.
[9] SONG Yun, QIAO Yong-gang, LI Gui-quan. Zinc Finger Nucleases and Targeted Genome Engineering in Plants[J]. China Biotechnology, 2013, 33(1): 109-113.