Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (12): 103-115    DOI: 10.13523/j.cb.2111002
    
Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot
YIN Ze-chao1,2,WANG Xiao-fang1,2,LONG Yan1,2,3,DONG Zhen-ying1,2,**(),WAN Xiang-yuan1,2,3,**()
1 Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
Download: HTML   PDF(1930KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Maize is a major staple crop and its yield accounts for about one-third of the total cereal production in China. Maize development is affected by multiple diseases during its growth process, among which ear rot is caused by several fungal species. Up to now, more than 40 fungal species that can induce ear rot have been identified. Ear rot can not only cause the loss of maize yield, but also lead to the serious decline of grain quality, and the mycotoxins produced by fungi species have detrimental effects on animal and human health. Ear rot control is still mainly based on chemical approaches, but it increases the cost of maize production and the risk of environmental pollution, breeding of resistant varieties should be the most economical, safe and effective method. Maize resistance to ear rot is a typical quantitative trait, research systems grading this trait have been established, and multiple maize varieties with high resistance to ear rot were isolated, which provided valuable material basis for genetic improvement of maize resistance to ear rot. Quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) showed that maize resistance to ear rot related QTLs distribute throughout the maize 10 chromosomes. However, few QTLs were applied to molecular breeding through marker-assisted-selection. This is possibly caused by the complexity of genetic architecture of maize resistance to ear rot, the difficulty of cloning of resistance genes, and the lack of systematic summary of the genetic research progress. In this study, we reviewed the progress of genetic research on maize resistance to ear rot, constructed a consistent physical map based on the results from QTL mapping or GWAS, and identified the mapping hotspots. Meanwhile, a comparative analysis between the candidate genes within the hotspots and the transcriptomic and metabolomic data from previous study were also conducted. Our work will provide valuable data for deciphering the mechanism of maize resistance to ear rot and provide important genetic resource for maize resistance breeding.



Key wordsMaize      Ear rot      Fusarium verticilliodes      Genetic mapping hotspots     
Received: 31 October 2021      Published: 13 January 2022
ZTFLH:  Q819  
Corresponding Authors: Zhen-ying DONG,Xiang-yuan WAN     E-mail: zydong@ustb.edu.cn;wanxiangyuan@ustb.edu.cn
Cite this article:

YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot. China Biotechnology, 2021, 41(12): 103-115.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2111002     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I12/103

Fig.1 Phenotypes of maize resistance to ear rot with different grades (a),(b),(c),(d),(e) Ears with resistance grade 1, 3, 5, 7 and 9 respectively
Fig.2 Distribution of the ear rot resistance related QTLs、SNPs、QTL hotspots and SNP hotspots on maize chromosomes
Fig.3 Summary of the genes isolated form transcriptomes and GO enrichment analysis
Fig. 4 GO enrichment of the candidate genes located in the genetic hotspots that identified by this study
[1]   White D G. Compendium of corn diseases.3rd Ed. Reston: APS Press, 1999.
[2]   段灿星, 王晓鸣, 宋凤景, 等. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48(11): 2152-2164.
[2]   Duan C X, Wang X M, Song F J, et al. Advances in research on maize resistance to ear rot. Scientia Agricultura Sinica, 2015, 48(11): 2152-2164.
[3]   Ju M, Zhou Z J, Mu C, et al. Dissecting the genetic architecture of Fusarium verticillioides seed rot resistance in maize by combining QTL mapping and genome-wide association analysis. Scientific Reports, 2017, 7: 46446.
doi: 10.1038/srep46446
[4]   席靖豪. 黄淮海夏玉米穗腐病病原多样性分析及玉米新品种抗病性鉴定. 郑州: 河南农业大学, 2018.
[4]   Xi J H. Pathogen diversity of summer maize ear rot in Huang-Huai-Hai region and resistance identification of new maize cultivars. Zhengzhou: Henan Agricultural University, 2018.
[5]   Stumpf R, Dos Santos J, Gomes L B, et al. Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons. Brazilian Journal of Microbiology, 2013, 44(1): 89-95.
doi: 10.1590/S1517-83822013000100012 pmid: 24159288
[6]   秦子惠. 玉米穗腐病致病镰孢特征及玉米-小麦致病镰孢关系研究. 北京: 中国农业科学院, 2014.
[6]   Qin Z H. Characteristcs of Fusarium species causing maize ear rot and relationship of pathogenic Fusarium spp. beteewn maize and wheat. Beijing: Chinese Academy of Agricultural Sciences, 2014.
[7]   丁梦军, 杨扬, 孙华, 等. 山东省玉米穗腐病病原菌的分离鉴定及优势种的系统发育分析. 华北农学报, 2019, 34(5): 216-223.
[7]   Ding M J, Yang Y, Sun H, et al. Isolation and identification of maize ear rot pathogens and phylogenetic analysis of dominant species in Shandong Province. Acta Agriculturae Boreali-Sinica, 2019, 34(5): 216-223.
[8]   孙华, 郭宁, 石洁, 等. 海南玉米穗腐病病原菌分离鉴定及优势种的遗传多样性分析. 植物病理学报, 2017, 47(5): 577-583.
[8]   Sun H, Guo N, Shi J, et al. Characterization of the maize ear rot pathogens and genetic diversity analysis of dominant species in Hainan. Acta Phytopathologica Sinica, 2017, 47(5): 577-583.
[9]   Hoenisch R W. Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot in field corn. Plant Disease, 1994, 78(5): 517.
doi: 10.1094/PD-78-0517
[10]   Davis R M, Kegel F R, Sillsw M, et al. Fusarium ear rot of maize. California Agriculture, 1989, 43(6): 4-5.
[11]   Cao A, Santiago R, Ramos A J, et al. Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain. International Journal of Food Microbiology, 2014, 177: 63-71.
doi: 10.1016/j.ijfoodmicro.2014.02.004
[12]   Munkvold G P, Hellmich R L, Showers W B. Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathology, 1997, 87(10): 1071-1077.
doi: 10.1094/PHYTO.1997.87.10.1071 pmid: 18945043
[13]   Desjardins A E, Plattner R D, Spencer G F. Inhibition of trichothecene toxin biosynthesis by naturally occurring shikimate aromatics. Phytochemistry, 1988, 27(3): 767-771.
doi: 10.1016/0031-9422(88)84090-1
[14]   Phil J. Fusarium mycotoxins: chemistry, genetics and biology - by Anne E. desjardins. Plant Pathology, 2007, 56(2): 337.
[15]   Miedaner T, Bolduan C, Melchinger A E. Aggressiveness and mycotoxin production of eight isolates each of Fusarium graminearum and Fusarium verticillioides for ear rot on susceptible and resistant early maize inbred lines. European Journal of Plant Pathology, 2010, 127(1): 113-123.
doi: 10.1007/s10658-009-9576-2
[16]   Desjardins A E, Munkvold G P, Plattner R D, et al. FUM1: a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Molecular Plant Microbe Interactions, 2002, 15(11): 1157-1164.
doi: 10.1094/MPMI.2002.15.11.1157
[17]   Santiago R, Cao A N, Malvar R A, et al. Genomics of maize resistance to Fusarium ear rot and fumonisin contamination. Toxins, 2020, 12(7): 431.
doi: 10.3390/toxins12070431
[18]   Clements M J, Maragos C M, Pataky J K, et al. Sources of resistance to fumonisin accumulation in grain and Fusarium ear and kernel rot of corn. Phytopathology, 2004, 94(3): 251-260.
doi: 10.1094/PHYTO.2004.94.3.251 pmid: 18943973
[19]   Bacon C W, Glenn A E, Yates I E. Fusarium verticillioides: managing the endophytic association with maize for reduced fumonisins accumulation. Toxin Reviews, 2008, 27(3-4): 411-446.
doi: 10.1080/15569540802497889
[20]   李人杰. 不同耕作方式及杀虫剂处理对玉米穗腐病发生及玉米籽粒中伏马毒素污染水平的影响. 保定: 河北农业大学, 2015.
[20]   Li R J. The effect of different tillage methods and insecticide treatment on severity of maize ear rot and contamination levels of fumonisins in maize kernels. Baoding: Hebei Agricultural University, 2015.
[21]   党晶晶, 许文超, 王亚楠, 等. 6种杀菌剂对玉米穗腐病的防治效果. 河北农业科学, 2017, 21(4): 44-46.
[21]   Dang J J, Xu W C, Wang Y N, et al. Control effects of six fungicides on maize kernel rot. Journal of Hebei Agricultural Sciences, 2017, 21(4): 44-46.
[22]   Ren W C, Liu N, Hou Y P, et al. Characterization of the resistance mechanism and risk of Fusarium verticillioides to the myosin inhibitor phenamacril. Phytopathology, 2020, 110(4): 790-794.
doi: 10.1094/PHYTO-11-19-0407-R
[23]   姜妍, 刘延兴, 李人杰, 等. 密度、施肥、种植方式及杀虫剂处理对玉米穗腐病及伏马毒素污染的影响. 植物保护学报, 2019, 46(3): 693-698.
[23]   Jiang Y, Liu Y X, Li R J, et al. The influences of planting density, fertilizer level, tillage method and insecticide on maize ear rot and contamination of fumonisins. Journal of Plant Protection, 2019, 46(3): 693-698.
[24]   陈万斌, 李荣荣, 何康来, 等. 杀虫剂和杀菌剂联合施用对玉米穗腐病田间防效和玉米产量的影响. 植物保护学报, 2019, 46(5): 1161-1162.
[24]   Chen W B, Li R R, He K L, et al. Effects of different fungicide and insecticide combinations on control effect of corn ear rot and yield. Journal of Plant Protection, 2019, 46(5): 1161-1162.
[25]   Galletti S, Paris R, Cianchetta S. Selected isolates of Trichoderma gamsii induce different pathways of systemic resistance in maize upon Fusarium verticillioides challenge. Microbiological Research, 2020, 233: 126406.
doi: 10.1016/j.micres.2019.126406
[26]   Vasileiadis V P, Sattin M, Otto S, et al. Crop protection in European maize-based cropping systems: Current practices and recommendations for innovative Integrated Pest Management. Agricultural Systems, 2011, 104(7): 533-540.
doi: 10.1016/j.agsy.2011.04.002
[27]   Zijlstra C, Lund I, Justesen A F, et al. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document). Pest Management Science, 2011, 67(6): 616-625.
doi: 10.1002/ps.v67.6
[28]   李辉, 向葵, 张志明, 等. 玉米穗腐病抗性机制及抗病育种研究进展. 玉米科学, 2019, 27(4): 167-174.
[28]   Li H, Xiang K, Zhang Z M, et al. Research progress on ear rot resistant mechanism and resistant breeding in maize. Journal of Maize Sciences, 2019, 27(4): 167-174.
[29]   Afolabi C G, Ojiambo P S, Ekpo E J A, et al. Evaluation of maize inbred lines for resistance to Fusarium ear rot and fumonisin accumulation in grain in tropical Africa. Plant Disease, 2007, 91(3): 279-286.
doi: 10.1094/PDIS-91-3-0279 pmid: 30780561
[30]   张艳, 张叶, 王梓钰, 等. 44份玉米自交系对镰孢穗腐病的抗性鉴定. 植物遗传资源学报, 2019, 20(2): 276-283.
[30]   Zhang Y, Zhang Y, Wang Z Y, et al. Evaluation of resistance to Fusarium ear rot in 44 maize inbred lines. Journal of Plant Genetic Resources, 2019, 20(2): 276-283.
[31]   Czembor E, Waśkiewicz A, Piechota U, et al. Differences in ear rot resistance and Fusarium verticillioides-produced fumonisin contamination between Polish currently and historically used maize inbred lines. Frontiers in Microbiology, 2019, 10: 449.
doi: 10.3389/fmicb.2019.00449
[32]   Scott G E. Site of action of factors for resistance to Fusarium moniliforme in maize. Plant Disease, 1984, 68(9): 804.
doi: 10.1094/PD-69-804
[33]   Gendloff E H. Components of resistance to Fusarium ear rot in field corn. Phytopathology, 1986, 76(7): 684.
doi: 10.1094/Phyto-76-684
[34]   张新, 汪红, 王永普, 等. 玉米穗粒腐病抗性遗传关系的研究. 作物杂志, 2000(3): 10-12.
[34]   Zhang X, Wang H, Wang Y P, et al. Study on genetic relationship of resistance to ear rot in maize. Crops, 2000(3): 10-12.
[35]   Ku L X, Sun Z H, Wang C L, et al. QTL mapping and epistasis analysis of brace root traits in maize. Molecular Breeding, 2012, 30(2): 697-708.
doi: 10.1007/s11032-011-9655-x
[36]   Liu X H, Tan Z B, Rong T Z. Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica, 2009, 167(2): 229-235.
doi: 10.1007/s10681-008-9874-3
[37]   Liu Y, Wang L W, Sun C L, et al. Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theoretical and Applied Genetics, 2014, 127(5): 1019-1037.
doi: 10.1007/s00122-014-2276-0
[38]   Ku L X, Zhao W M, Zhang J, et al. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theoretical and Applied Genetics, 2010, 121(5): 951-959.
doi: 10.1007/s00122-010-1364-z pmid: 20526576
[39]   Pérez-Brito D, Jeffers D, González-De-León D, et al. QTL mapping of fusarium moniliforme ear rot resistance in highland maize, Mexico. Agrociencia. 2001, 35(2): 181-196.
[40]   Robertson-Hoyt L A, Jines M P, Balint-Kurti P J, et al. QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Science, 2006, 46(4): 1734-1743.
doi: 10.2135/cropsci2005.12-0450
[41]   Septiani P, Lanubile A, Stagnati L, et al. Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: novel targets for breeding. Scientific Reports, 2019, 9: 5665.
doi: 10.1038/s41598-019-42248-0 pmid: 30952942
[42]   李晶晶. 基于近等基因系的玉米穗粒腐病抗性遗传研究. 郑州: 河南农业大学, 2008.
[42]   Li J J. Inheritance of resistance to Fusarium moniliforme ear rot in maize by near isogenic lines. Zhengzhou: Henan Agricultural University, 2008.
[43]   孙小东. 玉米穗粒腐病穗轴及籽粒抗性遗传研究. 郑州: 河南农业大学, 2009.
[43]   Sun X D. Inheritance of resistance to Furasium moniliforme kernel and cob rot in maize. Zhengzhou: Henan Agricultural University, 2009.
[44]   Maschietto V, Colombi C, Pirona R, et al. QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biology, 2017, 17(1): 1-21.
doi: 10.1186/s12870-016-0951-9
[45]   Wu Y B, Zhou Z J, Dong C P, et al. Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize. BMC Genomics, 2020, 21(1): 1-11.
doi: 10.1186/s12864-019-6419-1
[46]   Ding J Q, Wang X M, Chander S, et al. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Molecular Breeding, 2008, 22(3): 395-403.
doi: 10.1007/s11032-008-9184-4
[47]   Robertson L A, Kleinschmidt C E, White D G, et al. Heritabilities and correlations of Fusarium ear rot resistance and fumonisin contamination resistance in two maize populations. Crop Science, 2006, 46(1): 353-361.
doi: 10.2135/cropsci2005.0139
[48]   Ali M L, Taylor J H, Jie L, et al. Molecular mapping of QTLs for resistance to Gibberellaear rot, in corn, caused by Fusarium graminearum. Genome, 2005, 48(3): 521-533.
doi: 10.1139/g05-014
[49]   冯建英, 温阳俊, 张瑾, 等. 植物关联分析方法的研究进展. 作物学报, 2016, 42(7): 945-956.
doi: 10.3724/SP.J.1006.2016.00945
[49]   Feng J Y, Wen Y J, Zhang J, et al. Advances on methodologies for genome-wide association studies in plants. Acta Agronomica Sinica, 2016, 42(7): 945-956.
doi: 10.3724/SP.J.1006.2016.00945
[50]   Elshire R J, Glaubitz J C, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 2011, 6(5): e19379.
doi: 10.1371/journal.pone.0019379
[51]   Yu J M, Buckler E S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006, 17(2): 155-160.
doi: 10.1016/j.copbio.2006.02.003
[52]   Reinprecht Y, Wu X G, Yan S, et al. A microarray-based approach for identifying genes for resistance to Fusarium graminearum in maize (Zea mays L.). Cereal Research Communications, 2008, 36(6): 253-259.
doi: 10.1556/CRC.36.2008.Suppl.B.23
[53]   Chen J F, Shrestha R, Ding J Q, et al. Genome-wide association study and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm. G3 (Bethesda, Md), 2016, 6(12): 3803-3815.
[54]   Zila C T, Samayoa L F, Santiago R, et al. A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. G3 (Bethesda, Md), 2013, 3(11): 2095-2104.
[55]   Stagnati L, Lanubile A, Samayoa L F, et al. A genome wide association study reveals markers and genes associated with resistance to Fusarium verticillioides infection of seedlings in a maize diversity panel. G3 (Bethesda, Md), 2019, 9(2): 571-579.
[56]   Guo Z F, Zou C, Liu X G, et al. Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic prediction. Plant Disease, 2020, 104(6): 1725-1735.
doi: 10.1094/PDIS-07-19-1552-RE
[57]   张叶. 玉米穗腐病抗性基因的挖掘. 长春: 东北师范大学, 2019.
[57]   Zhang Y. Exploration of specific gene(s) for ear rot resistance in maize. Changchun: Northeast Normal University, 2019.
[58]   Mu C, Gao J Y, Zhou Z J, et al. Genetic analysis of cob resistance to F. verticillioides: another step towards the protection of maize from ear rot. Theoretical and Applied Genetics, 2019, 132(4): 1049-1059.
doi: 10.1007/s00122-018-3258-4
[59]   Coan M M D, Senhorinho H J C, Pinto R J B, et al. Genome-wide association study of resistance to ear rot by Fusarium verticillioides in a tropical field maize and popcorn core collection. Crop Science, 2018, 58(2): 564-578.
doi: 10.2135/cropsci2017.05.0322
[60]   Samayoa L F, Cao A, Santiago R, et al. Genome-wide association analysis for fumonisin content in maize kernels. BMC Plant Biology, 2019, 19(1): 1-11.
doi: 10.1186/s12870-018-1600-2
[61]   闻竞, 沈彦岐, 韩四平, 等. 玉米拟轮枝镰孢菌穗腐病抗性基因的挖掘. 作物学报, 2020, 46(9): 1303-1311.
doi: 10.3724/SP.J.1006.2020.03004
[61]   Wen J, Shen Y Q, Han S P, et al. Exploration of specific gene(s) for ear rot resistance to Fusarium verticilloides in maize. Acta Agronomica Sinica, 2020, 46(9): 1303-1311.
doi: 10.3724/SP.J.1006.2020.03004
[62]   Yao L S, Li Y M, Ma C, et al. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. Journal of Integrative Plant Biology, 2020, 62(10): 1535-1551.
doi: 10.1111/jipb.v62.10
[63]   Liu Y B, Hu G H, Zhang A, et al. Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm. The Crop Journal, 2021, 9(2): 325-341.
doi: 10.1016/j.cj.2020.08.008
[64]   Jong G D, Pamplona A K A, von Pinho R G, et al. Genome-wide association analysis of ear rot resistance caused by Fusarium verticillioides in maize. Genomics, 2018, 110(5): 291-303.
doi: 10.1016/j.ygeno.2017.12.001
[65]   Lanubile A, Pasini L, Marocco A. Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after Fusarium verticillioides infection. Journal of Plant Physiology, 2010, 167(16): 1398-1406.
doi: 10.1016/j.jplph.2010.05.015
[66]   Lanubile A, Ferrarini A, Maschietto V, et al. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics, 2014, 15(1): 1-16.
doi: 10.1186/1471-2164-15-1
[67]   Wang Y P, Zhou Z J, Gao J Y, et al. The mechanisms of maize resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq data. Frontiers in Plant Science, 2016, 7: 1654.
[68]   Lanubile A, Maschietto V, Borrelli V M, et al. Molecular basis of resistance to Fusarium ear rot in maize. Frontiers in Plant Science, 2017, 8: 1774.
doi: 10.3389/fpls.2017.01774
[69]   Gauthier L, Atanasova-Penichon V, Chéreau S, et al. Metabolomics to decipher the chemical defense of cereals against Fusarium graminearum and deoxynivalenol accumulation. International Journal of Molecular Sciences, 2015, 16(10): 24839-24872.
doi: 10.3390/ijms161024839 pmid: 26492237
[70]   Campos-Bermudez V A, Fauguel C M, Tronconi M A, et al. Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PLoS One, 2013, 8(4): e61580.
doi: 10.1371/journal.pone.0061580
[71]   Tang J D, Perkins A, Williams W P, et al. Using genome-wide associations to identify metabolic pathways involved in maize aflatoxin accumulation resistance. BMC Genomics, 2015, 16(1): 1-12.
doi: 10.1186/1471-2164-16-1
[72]   Atanasova-Penichon V, Barreau C, Richard-Forget F. Antioxidant secondary metabolites in cereals: potential involvement in resistance to Fusarium and mycotoxin accumulation. Frontiers in Microbiology, 2016, 7: 566.
doi: 10.3389/fmicb.2016.00566 pmid: 27148243
[73]   Venturini G, Babazadeh L, Casati P, et al. Assessing pigmented pericarp of maize kernels as possible source of resistance to Fusarium ear rot, Fusarium spp. infection and fumonisin accumulation. International Journal of Food Microbiology, 2016, 227: 56-62.
doi: 10.1016/j.ijfoodmicro.2016.03.022 pmid: 27071055
[74]   Bily A C, Reid L M, Taylor J H, et al. Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to Fusarium graminearum. Phytopathology, 2003, 93(6): 712-719.
doi: 10.1094/PHYTO.2003.93.6.712 pmid: 18943058
[75]   Cao A, Reid L M, Butrón A, et al. Role of hydroxycinnamic acids in the infection of maize silks by Fusarium graminearum Schwabe. Molecular Plant Microbe Interactions, 2011, 24(9): 1020-1026.
doi: 10.1094/MPMI-03-11-0079
[76]   Gauthier L, Bonnin-Verdal M N, Marchegay G, et al. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. International Journal of Food Microbiology, 2016, 221: 61-68.
doi: S0168-1605(16)30006-X pmid: 26812586
[77]   Awika J M, Rooney L W, Wu X L, et al. Screening methods to measure antioxidant activity of Sorghum (Sorghum bicolor) and Sorghum products. Journal of Agricultural and Food Chemistry, 2003, 51(23): 6657-6662.
doi: 10.1021/jf034790i
[78]   Gorinstein S, Lojek A, Milan, et al. Comparison of composition and antioxidant capacity of some cereals and pseudocereals. International Journal of Food Science & Technology, 2008, 43(4): 629-637.
[79]   侯浪. 玉米穗腐病串珠镰刀菌的生物学特性和玉米抗病性研究. 雅安: 四川农业大学, 2007.
[79]   Hou L. Study on biological characteristics of Fusarium moniliforme related to corn ear rot and disease resistance of corn. Yaan: Sichuan Agricultural University, 2007.
[80]   Maschietto V, Lanubile A, Leonardis S D, et al. Constitutive expression of pathogenesis-related proteins and antioxydant enzyme activities triggers maize resistance towards Fusarium verticillioides. Journal of Plant Physiology, 2016, 200: 53-61.
doi: 10.1016/j.jplph.2016.06.006 pmid: 27340858
[81]   Maschietto V, Marocco A, Malachova A, et al. Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes. Journal of Plant Physiology, 2015, 188: 9-18.
doi: 10.1016/j.jplph.2015.09.003 pmid: 26398628
[82]   Pereira G S, Pinho R G V, Pinho E V R V, et al. Selection of maize inbred lines and gene expression for resistance to ear rot. Genetics and Molecular Research, 2017, 16(3). DOI: 10.4238/gmr16039415.
doi: 10.4238/gmr16039415
[83]   Christensen S A, Nemchenko A, Park Y S, et al. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize. Molecular Plant-Microbe Interactions, 2014, 27(11): 1263-1276.
doi: 10.1094/MPMI-06-13-0184-R pmid: 25122482
[84]   Mohammadi M, Anoop V, Gleddie S, et al. Proteomic profiling of two maize inbreds during early Gibberella ear rot infection. Proteomics, 2011, 11(18): 3675-3684.
doi: 10.1002/pmic.201100177 pmid: 21751381
[85]   Lanubile A, Bernardi J, Marocco A, et al. Differential activation of defense genes and enzymes in maize genotypes with contrasting levels of resistance to Fusarium verticillioides. Environmental and Experimental Botany, 2012, 78: 39-46.
doi: 10.1016/j.envexpbot.2011.12.006
[86]   Naumann T A, Wicklow D T, Price N P J. Identification of a Chitinase-modifying protein from Fusarium verticillioides: truncation of a host resistance protein BY A fungalysin metalloprotease. Journal of Biological Chemistry, 2011, 286(41): 35358-35366.
doi: 10.1074/jbc.M111.279646 pmid: 21878653
[87]   Borrego E, Kolomiets M. Synthesis and functions of jasmonates in maize. Plants, 2016, 5(4): 41.
doi: 10.3390/plants5040041
[88]   Lim G H, Singhal R, Kachroo A, et al. Fatty acid- and lipid-mediated signaling in plant defense. Annual Review of Phytopathology, 2017, 55: 505-536.
doi: 10.1146/phyto.2017.55.issue-1
[1] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[2] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[3] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[4] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[5] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[6] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[7] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[8] WANG You-hua,ZOU Wan-nong,LIU Xiao-qing,WANG Zhaohua,SUN Guo-qing. Global Patent Analysis and Technology Prospect of Genetically Modified Maize[J]. China Biotechnology, 2019, 39(12): 83-94.
[9] Ai-guo SU,Wei SONG,Shuai-shuai WANG,Jiu-ran ZHAO. Advance on Cytoplasmic Male Sterility and Fertility Restoration Genes in Maize[J]. China Biotechnology, 2018, 38(1): 108-114.
[10] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[11] You-hui TIAN,Xiang-yuan WAN. Cytobiology and Molecular Genetics Research Methods on Maize Anther Development[J]. China Biotechnology, 2018, 38(1): 88-99.
[12] SHI Li-ping, JI Jing, WANG Gang, JIN Chao, XIE Chao, DU Xi-long, GUAN Chung-feng, ZHANG Lie, LI Chen. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress[J]. China Biotechnology, 2016, 36(8): 31-37.
[13] ZHANG Cai-bo, ZHANG Yan-hua, LIU He-yang, WANG Han-yu, ZENG Wen-bing, RONG Ting-zhao, CAO Mo-ju. Construction of Fingerprinting Using SRAP and SSR Markers for Maize Inbred Lines by Space Flight[J]. China Biotechnology, 2013, 33(10): 103-110.
[14] YANG Qiu-ling, JI Jing, WANG Gang, WU Wei-dan, HUO Pei. Traits Analysis of Maize with the Psy and Lycb[J]. China Biotechnology, 2012, 32(12): 52-58.
[15] HUO Pei, JI Jing, WANG Gang, GUAN Chun-feng, JIN Chao. Transformation and Genetic Analysis of Maize with the Lycb[J]. China Biotechnology, 2012, 32(07): 43-48.