Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (11): 82-88    DOI: 10.13523/j.cb.2106045
    
Research Progress of lncRNA in Animal Fat Deposition
LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang()
Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
Download: HTML   PDF(502KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Long non-coding RNA (lncRNA) is a regulatory non-coding RNA with a length of more than 200 nucleotides, which can be used at the transcription level, post-transcriptional level, and epigenetic level to affect gene expression. Lipogenesis is a complex and orderly process. A large number of studies have shown that lncRNA plays an important role in the process of adipogenesis. It can affect various biological processes such as lipid metabolism and adipogenic differentiation, thereby indirectly affecting meat quality. This is of great significance for improving the quality of livestock and poultry meat, avoiding the waste caused by excessive conversion of feed into fat in the breeding industry, and preventing and treating diseases related to fat metabolism. This article reviews the basic characteristics of lncRNA and the progress of its role in animal fat deposition, in order to provide a theoretical basis for cultivating high-quality livestock and poultry, preventing and treating diseases related to fat metabolism.



Key wordslncRNA      Adipose      Differentiation      Lipid metabolism     
Received: 24 June 2021      Published: 01 December 2021
ZTFLH:  Q819  
Corresponding Authors: Xiang-yang MIAO     E-mail: miaoxy32@163.com
Cite this article:

LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition. China Biotechnology, 2021, 41(11): 82-88.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2106045     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I11/82

Fig.1 Classification of RNA
Fig.2 Adipogenic differentiation process of MSCs
[1]   Losko M, Dolicka D, Pydyn N, et al. Integrative genomics reveal a role for MCPIP1 in adipogenesis and adipocyte metabolism. Cellular and Molecular Life Sciences, 2020, 77(23):4899-4919.
doi: 10.1007/s00018-019-03434-5
[2]   Khalifa O, Errafii K, Al-Akl N S, et al. Noncoding RNAs in nonalcoholic fatty liver disease: potential diagnosis and prognosis biomarkers. Disease Markers, 2020, 2020:8822859.
[3]   Hu Y M, Lv J, Fang Y, et al. Crtc1 deficiency causes obesity potentially via regulating PPARγ pathway in white adipose. Frontiers in Cell and Developmental Biology, 2021, 9:602529.
doi: 10.3389/fcell.2021.602529
[4]   Shu L Y, Hou G S, Zhao H, et al. Resveratrol improves high-fat diet-induced insulin resistance in mice by downregulating the lncRNA NONMMUT008655.2. American Journal of Translational Research, 2020, 12(1):1-18.
[5]   Squillaro T, Peluso G, Galderisi U, et al. Long non-coding RNAs in regulation of adipogenesis and adipose tissue function. eLife, 2020, 9:59053. DOI: 10.7554/elife.59053.
doi: 10.7554/elife.59053
[6]   Ding C M, Lim Y C, Chia S Y, et al. De novo reconstruction of human adipose transcriptome reveals conserved lncRNAs as regulators of brown adipogenesis. Nature Communications, 2018, 9(1):1329.
doi: 10.1038/s41467-018-03754-3
[7]   Lander E S, Linton L M, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822):860-921.
doi: 10.1038/35057062
[8]   Jathar S, Kumar V, Srivastava J, et al. Technological developments in lncRNA biology. Advances in Experimental Medicine and Biology, 2017, 1008:283-323.
[9]   Dahariya S, Paddibhatla I, Kumar S, et al. Long non-coding RNA: classification, biogenesis and functions in blood cells. Molecular Immunology, 2019, 112:82-92.
doi: S0161-5890(19)30061-6 pmid: 31079005
[10]   Zhang P J, Wu W Y, Chen Q, et al. Non-coding RNAs and their integrated networks. Journal of Integrative Bioinformatics, 2019, 16(3). DOI: 10.1515/jib-2019-0027.
doi: 10.1515/jib-2019-0027
[11]   Charles Richard J L, Eichhorn P J A. Platforms for investigating LncRNA functions. SLAS Technology: Translating Life Sciences Innovation, 2018, 23(6):493-506.
doi: 10.1177/2472630318780639
[12]   Brandão B B, Poojari A, Rabiee A Thermogenic fat: development, physiological function, and therapeutic potential. Int J Mol Sci, 2021, 22(11):5906.
doi: 10.3390/ijms22115906
[13]   Oguri Y, Shinoda K, Kim H, et al. CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling. Cell, 2020, 182(3): 563-577.e20.
[14]   Carson C, Macias-Velasco J F, Gunawardana S, et al. Brown adipose expansion and remission of glycemic dysfunction in obese SM/J mice. Cell Reports, 2020, 33(1):108237.
doi: 10.1016/j.celrep.2020.108237 pmid: 33027654
[15]   Montanari T, Pošćić N, Colitti M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obesity Reviews, 2017, 18(5):495-513.
doi: 10.1111/obr.12520 pmid: 28187240
[16]   Fan L Y, Xu H Y, Li D, et al. A novel long noncoding RNA, AC092834.1, regulates the adipogenic differentiation of human adipose-derived mesenchymal stem cells via the DKK1/Wnt/β-catenin signaling pathway. Biochemical and Biophysical Research Communications, 2020, 525(3):747-754.
doi: 10.1016/j.bbrc.2020.02.140
[17]   Almalki S G, Agrawal D K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation, 2016, 92(1-2):41-51.
doi: 10.1016/j.diff.2016.02.005 pmid: 27012163
[18]   Guru A, Issac P K, Velayutham M, et al. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Molecular Biology Reports, 2021, 48(1):743-761.
doi: 10.1007/s11033-020-06036-8
[19]   Hsu C L, Lin Y J, Ho C T, et al. Inhibitory effects of garcinol and pterostilbene on cell proliferation and adipogenesis in 3T3-L1 cells. Food & Function, 2012, 3(1):49-57.
[20]   Bagchi D P, Nishii A, Li Z R, et al. Wnt/β-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Molecular Metabolism, 2020, 42:101078.
doi: 10.1016/j.molmet.2020.101078
[21]   Rahman M S, Kim Y S. PINK1-PRKN mitophagy suppression by mangiferin promotes a brown-fat-phenotype via PKA-p38 MAPK signalling in murine C3H10T1/2 mesenchymal stem cells. Metabolism, 2020, 107:154228.
doi: 10.1016/j.metabol.2020.154228
[22]   Lanz R B, Razani B, Goldberg A D, et al. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). PNAS, 2002, 99(25):16081-16086.
doi: 10.1073/pnas.192571399
[23]   Xu B, Gerin I, Miao H Z, et al. Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLoS One, 2010, 5(12):e14199. DOI: 10.1371/journal.pone.0014199.
doi: 10.1371/journal.pone.0014199
[24]   Wei N, Wang Y, Xu R X, et al. PU.1 antisense lncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes. Animal Genetics, 2015, 46(2):133-140.
doi: 10.1111/age.12275 pmid: 25691151
[25]   Pang W J, Lin L G, Xiong Y, et al. Knockdown of PU.1 AS lncRNA inhibits adipogenesis through enhancing PU.1 mRNA translation. Journal of Cellular Biochemistry, 2013, 114(11):2500-2512.
doi: 10.1002/jcb.v114.11
[26]   Sun Y M, Cai R, Wang Y Q, et al. A newly identified LncRNA LncIMF4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis. Animals, 2020, 10(6):926.
doi: 10.3390/ani10060926
[27]   Huang J P, Zheng Q Z, Wang S Z, et al. High-throughput RNA sequencing reveals NDUFC2-AS lncRNA promotes adipogenic differentiation in Chinese buffalo (Bubalus bubalis L.). Genes, 2019, 10(9):689.
doi: 10.3390/genes10090689
[28]   Xiao T F, Liu L H, Li H L, et al. Long noncoding RNA ADINR regulates adipogenesis by transcriptionally activating C/EBPα. Stem Cell Reports, 2015, 5(5):856-865.
doi: 10.1016/j.stemcr.2015.09.007
[29]   Zhu R R, Feng X, Wei Y T, et al. lncSAMM50 enhances adipogenic differentiation of buffalo adipocytes with no effect on its host gene. Frontiers in Genetics, 2021, 12:626158.
doi: 10.3389/fgene.2021.626158
[30]   Li H, Feng J C, Li G L, et al. The effect of lnc-RAP3 on 3T3-L1 preadipocyte differentiation in mouse. Hereditas, 2018, 40(9):758-766.
[31]   Chen J, Liu Y, Lu S, et al. The role and possible mechanism of lncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation. International Journal of Obesity, 2017, 41(2):299-308.
doi: 10.1038/ijo.2016.189 pmid: 27780975
[32]   Yu X H, Deng W Y, Chen J J, et al. LncRNA kcnq1ot1 promotes lipid accumulation and accelerates atherosclerosis via functioning as a CeRNA through the miR-452-3p/HDAC3/ABCA1 axis. Cell Death & Disease, 2020, 11:1043.
[33]   Li M, Xie Z Y, Wang P, et al. The long noncoding RNA GAS5 negatively regulates the adipogenic differentiation of MSCs by modulating the miR-18a/CTGF axis as a CeRNA. Cell Death & Disease, 2018, 9:554.
[34]   Gao A B, Cayabyab F S, Chen X, et al. Implications of sortilin in lipid metabolism and lipid disorder diseases. DNA and Cell Biology, 2017, 36(12):1050-1061.
doi: 10.1089/dna.2017.3853
[35]   Kersten S. Physiological regulation of lipoprotein lipase. Biochimica et Biophysica Acta, 2014, 1841(7):919-933.
doi: 10.1016/j.bbalip.2014.03.013 pmid: 24721265
[36]   Baggio G, Manzato E, Gabelli C, et al. Apolipoprotein C-II deficiency syndrome. Clinical features, lipoprotein characterization, lipase activity, and correction of hypertriglyceridemia after apolipoprotein C-II administration in two affected patients. Journal of Clinical Investigation, 1986, 77(2):520-527.
pmid: 3944267
[37]   Li P, Ruan X B, Yang L, et al. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metabolism, 2015, 21(3):455-467.
doi: 10.1016/j.cmet.2015.02.004
[38]   Hennessy E J, van Solingen C, Scacalossi K R, et al. The long noncoding RNA CHROME regulates cholesterol homeostasis in Primates. Nature Metabolism, 2019, 1(1):98-110.
doi: 10.1038/s42255-018-0004-9
[39]   Ha E E, van Camp A G, Bauer R C. Genetics-driven discovery of novel regulators of lipid metabolism. Current Opinion in Lipidology, 2019, 30(3):157-164.
doi: 10.1097/MOL.0000000000000605
[40]   Sallam T, Jones M C, Gilliland T, et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature, 2016, 534(7605):124-128.
doi: 10.1038/nature17674
[41]   Li M X, Sun X M, Cai H F, et al. Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochimica et Biophysica Acta, 2016, 1859(7):871-882.
[42]   Jiang R, Li H, Huang Y Z, et al. Transcriptome profiling of lncRNA related to fat tissues of Qinchuan cattle. Gene, 2020, 742:144587.
doi: S0378-1119(20)30256-0 pmid: 32179170
[43]   Zhang S H, Kang Z H, Sun X M, et al. Novel lncRNA lncFAM200B: molecular characteristics and effects of genetic variants on promoter activity and cattle body measurement traits. Frontiers in Genetics, 2019, 10:968.
doi: 10.3389/fgene.2019.00968
[44]   Zhang S H, Kang Z H, Cai H F, et al. Identification of novel alternative splicing of bovine lncRNA lncFAM200B and its effects on preadipocyte proliferation. Journal of Cellular Physiology, 2021, 236(1):601-611.
doi: 10.1002/jcp.v236.1
[45]   Ma L, Zhang M, Jin Y Y, et al. Comparative transcriptome profiling of mRNA and lncRNA related to tail adipose tissues of sheep. Frontiers in Genetics, 2018, 9:365.
doi: 10.3389/fgene.2018.00365
[46]   Han F H, Li J, Zhao R R, et al. Identification and co-expression analysis of long noncoding RNAs and mRNAs involved in the deposition of intramuscular fat in Aohan fine-wool sheep. BMC Genomics, 2021, 22(1):98.
doi: 10.1186/s12864-021-07385-9
[47]   Huang W L, Zhang X X, Li A, et al. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds. Oncotarget, 2017, 8(50):87539-87553.
doi: 10.18632/oncotarget.v8i50
[48]   Huang W L, Zhang X X, Li A, et al. Genome-wide analysis of mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds. Cellular Physiology and Biochemistry, 2018, 50(6):2406-2422.
doi: 10.1159/000495101
[49]   Wang J, Chen M Y, Chen J F, et al. LncRNA IMFlnc1 promotes porcine intramuscular adipocyte adipogenesis by sponging miR-199a-5p to up-regulate CAV-1. BMC Molecular and Cell Biology, 2020, 21(1):77.
doi: 10.1186/s12860-020-00324-8
[50]   Liu X, Liu K Q, Shan B S, et al. A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs. Journal of Animal Science and Biotechnology, 2018, 9:76.
doi: 10.1186/s40104-018-0292-7
[1] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[2] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[3] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[4] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[5] ZENG Xiang-Yi,PAN Jie. Progress on Autophagy Regulation of Browning of White Adipose Cells[J]. China Biotechnology, 2020, 40(6): 63-73.
[6] WU Jia-han,JIANG Lin,CHEN Ting,SUN Jia-jie,ZHANG Yong-liang,XI Qian-yun. Research on the Interaction between Adipose Tissue Exosomes and Other Tissues[J]. China Biotechnology, 2020, 40(3): 111-116.
[7] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[8] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[9] ZHU Ying,FAN Meng-tian,LI Ju-qiong,CHEN Bin,ZHANG Meng-hao,WU Jing-hong,SHI Qiong. Effect of Chemokine Receptor CX3CR1 on Osteogenic Differentiation of Human Aortic Valve Interstitial Cells[J]. China Biotechnology, 2019, 39(8): 7-16.
[10] Yu CHENG,Qiong SHI,Li-qin AN,Meng-tian FAN,Gai-gai HUANG,Ya-guang WENG. BMP7 Gene Silencing Inhibits Osteogenic Differentiation of Porcine Arotic Valve Interstitial Cells Induced by Osteogenic Induction Medium[J]. China Biotechnology, 2019, 39(5): 63-71.
[11] Xin LI,Zhong-li ZHAO,Xiao-tong LUO,Yang CAO,Li-chun ZHANG,Yong-sheng YU,Hai-guo JIN. Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells[J]. China Biotechnology, 2019, 39(4): 94-100.
[12] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[13] Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells[J]. China Biotechnology, 2019, 39(1): 13-20.
[14] Wen-wen SHI,Lei ZHANG. Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation[J]. China Biotechnology, 2018, 38(8): 76-83.
[15] Yang TAN,Sheng LIU,Feng-ling LUO,Xiao-lian ZHANG. Analysis of Differential lncRNA Expression Profile in the Macrophages after Mycobacterium tuberculosis Stimulation[J]. China Biotechnology, 2018, 38(5): 1-9.