Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (12): 61-73    DOI: 10.13523/j.cb.2111006
    
Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height
MA Ya-jie1,2,GAO Yue-xin1,2,LI Yi-ping1,2,LONG Yan1,2,3,DONG Zhen-ying1,2,**(),WAN Xiang-yuan1,2,3,**()
1 Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
Download: HTML   PDF(1402KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Plant height and ear height are important agronomic traits of maize, which directly affect the nutrient utilization efficiency and lodging resistance of the plant, and ultimately affect the yield of maize. Plant height and ear height are typical quantitative traits, and quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) have been used to mine the related genetic loci. Some key genes regulating plant height and ear height were cloned by fine-mapping or by using mutants. However, due to the differences in type and size of mapping populations, type and density of the markers and statistical methods used by different research groups, the identified QTL was divergent significantly, and it was difficult to reveal the genetic structure of plant height and ear height of maize by single study. The identified QTLs were mainly based on genetic maps at early stages, and the versions of maize reference genome were updated several times, which hampered the efficient utilization of previously identified QTLs. Here, the mapping information of plant height and ear height was normalized and integrated into the V4 version of the maize inbred line B73 reference genome, and a consistent physical map for plant height and ear height was constructed. Furthermore, the mapping hotspots of plant height and ear height were identified by combining the results from independent studies. The cloned genes regulating both traits were also summarized. This study is of great significance for the in-depth dissection of the genetic structure of plant height and ear height, as well as for aiding gene cloning and marker-assisted selection in molecular breeding.



Key wordsMaize      Plant height      Ear height      QTL mapping      Genome-wide association study     
Received: 01 November 2021      Published: 13 January 2022
ZTFLH:  Q819  
Corresponding Authors: Zhen-ying DONG,Xiang-yuan WAN     E-mail: zydong@ustb.edu.cn;wanxiangyuan@ustb.edu.cn
Cite this article:

MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height. China Biotechnology, 2021, 41(12): 61-73.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2111006     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I12/61

Fig.1 Chromosomal distribution of the plant height and ear height related QTLs and SNPs in maize
Fig.2 Chromosomal distribution of the plant height and ear height associated SNP and QTL hotspots in maize
基因名 基因ID号 位置 /bp 作用机制 参考文献
CT2 Zm00001d027886 Chr1: 16721214~16732176 CLV-WUS途径 [12]
ZmRPH1* Zm00001d028073 Chr1: 21988680~22008381 微管活动 [27]
RS2 Zm00001d030737 Chr1: 156874430~156878542 叶片发育 [54]
BR2* Zm00001d031871 Chr1: 204746911~204757135 auxin转运 [20]
AN1 Zm00001d032961 Chr1: 244857295~244868917 GA生物合成 [71]
BRD1 Zm00001d033180 Chr1: 253160991~253168253 BR生物合成 [72]
RTH1 Zm00001d033303 Chr1: 258162682~258179005 玉米根毛极性生长 [32]
D8 Zm00001d033680 Chr1: 270916585~270921477 GA信号转导 [73]
KN1 Zm00001d033859 Chr1: 276071835~276082742 GA生物合成 [74]
VP8 Zm00001d034383 Chr1: 291470941~291482373 调控分生组织发育 [75]
ZmWUS1 Zm00001d001948 Chr2: 3415296~3419504 调控分生组织发育 [76]
ZmGA3ox2* Zm00001d039634 Chr3: 9744156~9749561 GA生物合成 [77]
NA1 Zm00001d042843 Chr3: 181819965~181824489 BR生物合成 [17]
CCD8* Zm00001d043442 Chr3: 200057508~200064029 SL生物合成 [21]
D9 Zm00001d013465 Chr5: 12226829~12231706 GA信号转导 [78]
TD1 Zm00001eb228140 Chr5: 63455339~63461620 CLV-WUS途径 [79]
NA2 Zm00001d014887 Chr5: 67024671~67031523 BR生物合成 [80]
SXD1 Zm00001d015985 Chr5: 136804208~136823694 蔗糖输出 [29]
BV1 Zm00001d016486 Chr5: 164497866~164513396 auxin信号转导 [81]
TAN1 Zm00001d038060 Chr6: 146618427~146623046 微管活动 [24]
DIL1 Zm00001d038087 Chr6: 147377664~147387225 转录因子调控 [31]
VT2 Zm00001d008700 Chr8: 17393223~17400365 auxin生物合成 [82]
CLT1 Zm00001d011611 Chr8: 155858695~155868259 微管活动 [25]
BRI1a Zm00001d011721 Chr8: 159897928~159904296 BR信号转导 [83]
ELM1 Zm00001d011876 Chr8: 163612740~163619786 光敏色素合成 [30]
ZmPIN1a* Zm00001d044812 Chr9: 3290263~3296559 auxin转运 [84]
D3 Zm00001d045563 Chr9: 26820540~26827180 GA生物合成 [85]
CR4 Zm00001d023425 Chr10: 5234083~5239788 激酶调控 [70]
Table 1 Summary of the cloned genes regulating plant height and ear height in maize
性状 染色体 QTL热点区间/Mb* SNP热点区间/Mb* 热点区间内基因
PH 1 16.560~23.961 (3), 156.876~162.524 (3),162.524~166.195 (4), 166.195~171.401 (3),197.053~204.150 (3) 0.003~9.158 (40), 181.954~186.084 (11),192.893~202.158(13), 208.076~214.592 (12), 219.866~220.401 (5),254.195~264.696 (9), 281.131~284.691 (7) CT2, ZmRPH1, RS2, RTH1
2 13.900~20.399 (4), 181.460~194.070 (3),198.195~207.289 (3) 0.016~16.081 (29), 180.734~184.885 (6),207.979~214.232 (6), 237.954~244.359 (12) ZmWUS1
3 144.117~153.034 (3), 170.542~181.952 (4),181.952~183.394 (3), 217.222~224.598 (4) 0.038~3.619 (6), 9.229~19.846 (9),136.381~140.756 (7), 156.227~175.346 (24) NA1,ZmGA3ox2
4 204.210~237.006 (3) 0.115~1.713 (9), 7.408~12.177 (6),118.311~123.427 (6), 183.013~187.574 (6),200.548~204.207 (6), 236.483~245.430 (9)
5 8.848~13.389 (3), 14.5882~19.174 (3),66.605~71.974 (3), 131.470~155.423 (3) 1.847~6.709 (10), 26.762~30.721 (7),207.482~217.895 (10), 218.489~221.975 (5) D9, NA2, SXD1
6 0.115~21.273 (57), 75.859~79.979 (5),84.659~89.402 (6), 113.745~122.337 (13),160.902~166.929 (11)
7 11.076~14.311 (3) 141.852~146.463 (7)
8 102.416~113.493 (3) 95.738~98.055 (5), 115.742~121.755 (6),131.441~138.666 (15), 142.471~145.827 (5),160.393~177.522 (18) ELM1
9 23.112~33.706 (4), 33.706~38.811 (5),38.811~68.852 (4), 68.852~99.492 (3) 10.911~15.811 (10), 141.541~145.101 (17),151.214~157.632 (11) D3
10 4.510~6.071 (3) 0.063~6.833 (20), 13.457~19.812 (7),31.828~32.011 (6), 62.317~68.225 (22),128.650~138.644 (17), 146.947~149.657 (6) CR4
EH 1 90.149~93.194 (3), 93.194~97.377 (4),97.377~131.222 (3), 131.222~148.194 (4),148.194~150.484 (3), 184.878~190.229 (3) 4.375~8.676 (4), 206.424~211.253 (4)
2 15.676~23.828 (4) 235.926~244.092 (10)
3 42.869~47.294 (3), 198.944~201.134 (3),201.134~203.609 (5), 203.609~205.193 (4),205.193~206.066 (3), 206.066~214.572 (5),217.070~224.597 (4) CCD8
5 142.584~154.201 (3), 154.201~172.796 (4),172.796~175.060 (3), 176.928~178.637 (3),180.252~196.012 (3) 214.475~218.657 (5)
7 119.718~128.801 (3), 132.787~134.113 (3)
8 123.813~137.740 (3)
9 15.036~23.111 (4), 23.111~68.851 (3),68.851~94.280 (4), 94.280~121.461 (3) 142.109~144.964 (17)
10 79.520~88.718 (3), 88.718~94.914 (4),103.654~109.141 (4)
Table S1 Summary of QTL and SNP hotspots for plant height and ear height in maize
[1]   Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annual Review of Plant Biology, 2018, 69: 437-468.
doi: 10.1146/arplant.2018.69.issue-1
[2]   Prasanna B M. Diversity in global maize germplasm: Characterization and utilization. Journal of Biosciences, 2012, 37(5): 843-855.
pmid: 23107920
[3]   李志敏. 利用相关群体对玉米生育期和株型及产量相关性状QTL分析. 郑州: 河南农业大学, 2011.
[3]   Li Z M. QTL mapping for flowering time, plant-type and yield components using two related populations in maize. Zhengzhou: Henan Agricultural University, 2011.
[4]   崔爱民, 张久刚, 张虎, 等. 我国玉米生产现状及发展变革. 中国农业科技导报, 2020, 22(7): 10-19.
[4]   Cui A M, Zhang J G, Zhang H, et al. Preliminary exploration on current situation and development of maize production in China. Journal of Agricultural Science and Technology, 2020, 22(7): 10-19.
[5]   Khush G S. Green revolution: the way forward. Nature Reviews Genetics, 2001, 2(10): 815-822.
pmid: 11584298
[6]   Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17(3): 385-403.
doi: 10.1007/BF00056241
[7]   Salas Fernandez M G, Becraft P W, Yin Y H, et al. From dwarves to giants? Plant height manipulation for biomass yield. Trends in Plant Science, 2009, 14(8): 454-461.
doi: 10.1016/j.tplants.2009.06.005 pmid: 19616467
[8]   Tang J H, Teng W T, Yan J B, et al. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 2007, 155(1-2): 117-124.
doi: 10.1007/s10681-006-9312-3
[9]   Weng J F, Xie C X, Hao Z F, et al. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One, 2011, 6(12): e29229. DOI: 10.1371/journal.pone.0029229.
doi: 10.1371/journal.pone.0029229
[10]   Leiboff S, Li X R, Hu H C, et al. Genetic control of morphometric diversity in the maize shoot apical meristem. Nature Communications, 2015, 6: 8974.
doi: 10.1038/ncomms9974 pmid: 26584889
[11]   Somssich M, Je B I, Simon R, et al. CLAVATA-WUSCHEL signaling in the shoot meristem. Development (Cambridge, England), 2016, 143(18): 3238-3248.
doi: 10.1242/dev.133645
[12]   Bommert P, Je B I, Goldshmidt A, et al. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature, 2013, 502(7472): 555-558.
doi: 10.1038/nature12583
[13]   Somerville C. Cellulose synthesis in higher plants. Annual Review of Cell and Developmental Biology, 2006, 22(1): 53-78.
doi: 10.1146/cellbio.2006.22.issue-1
[14]   张向歌. 玉米矮化基因d2014的克隆及其调控节间伸长的机制解析. 雅安: 四川农业大学, 2018.
[14]   Zhang X G. Cloning of maize dwarf gene d2014 and its mechanism of regulating internode elongation. Yaan: Sichuan Agricultural University, 2018.
[15]   Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis. The Plant Cell, 1995, 7(8): 1307-1317.
[16]   Huang D B, Wang S G, Zhang B C, et al. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. The Plant Cell, 2015, 27(6): 1681-1696.
doi: 10.1105/tpc.15.00015
[17]   Hartwig T, Chuck G S, Fujioka S, et al. Brassinosteroid control of sex determination in maize. PNAS, 2011, 108(49): 19814-19819.
doi: 10.1073/pnas.1108359108 pmid: 22106275
[18]   Zhiponova M K, Vanhoutte I, Boudolf V, et al. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. The New Phytologist, 2013, 197(2): 490-502.
doi: 10.1111/nph.2012.197.issue-2
[19]   Schenck D, Christian M, Jones A, et al. Rapid auxin-induced cell expansion and gene expression: a four-decade-old question revisited. Plant Physiology, 2010, 152(3): 1183-1185.
doi: 10.1104/pp.109.149591 pmid: 20071604
[20]   Xing A Q, Gao Y F, Ye L F, et al. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. Journal of Experimental Botany, 2015, 66(13): 3791-3802.
doi: 10.1093/jxb/erv182
[21]   Guan J C, Koch K E, Suzuki M, et al. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiology, 2012, 160(3): 1303-1317.
doi: 10.1104/pp.112.204503
[22]   Beveridge C A, Dun E A, Rameau C. Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiology, 2009, 151(3): 985-990.
doi: 10.1104/pp.109.143909
[23]   Dun E A, de Saint Germain A, Rameau C, et al. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiology, 2012, 158(1): 487-498.
doi: 10.1104/pp.111.186783
[24]   Cleary A L, Smith L G. The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. The Plant Cell, 1998, 10(11): 1875-1888.
doi: 10.1105/tpc.10.11.1875
[25]   Lau K H. Co-orthologs of KATANIN1 impact plant morphology and show differential evolution in maize. The United States: Purdue University, 2016.
[26]   Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. International Review of Cell and Molecular Biology, 2014, 312: 1-52.
[27]   Li W, Ge F H, Qiang Z Q, et al. Maize ZmRPH1 encodes a microtubule-associated protein that controls plant and ear height. Plant Biotechnology Journal, 2020, 18(6): 1345-1347.
doi: 10.1111/pbi.v18.6
[28]   Provencher L M, Miao L, Sinha N, et al. Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. The Plant Cell, 2001, 13(5): 1127-1141.
doi: 10.1105/tpc.13.5.1127
[29]   Russin W A, Evert R F, Vanderveer P J, et al. Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective1 maize mutant. The Plant Cell, 1996, 8(4): 645-658.
pmid: 12239395
[30]   Sawers R J H, Linley P J, Farmer P R, et al. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiology, 2002, 130(1): 155-163.
doi: 10.1104/pp.006411
[31]   Jiang F K, Guo M, Yang F, et al. Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize. PLoS One, 2012, 7(5): e37040.
doi: 10.1371/journal.pone.0037040
[32]   Wen T J, Hochholdinger F, Sauer M, et al. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiology, 2005, 138(3): 1637-1643.
doi: 10.1104/pp.105.062174
[33]   Beavis W D, Grant D, Albertsen M, et al. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theoretical and Applied Genetics, 1991, 83(2): 141-145.
doi: 10.1007/BF00226242 pmid: 24202349
[34]   Yan J B, Tang H, Huang Y Q, et al. Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chinese Science Bulletin, 2003, 48(23): 2601-2607.
doi: 10.1360/03wc0044
[35]   Pan Q C, Xu Y C, Li K, et al. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiology, 2017, 175(2): 858-873.
doi: 10.1104/pp.17.00709
[36]   Bai W, Zhang H, Zhang Z, et al. The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breeding, 2009. DOI: 10.1111/j.1439-0523.2009.01709.x.
doi: 10.1111/j.1439-0523.2009.01709.x
[37]   Zhu W H, Zhao Y K, Liu J B, et al. QTL mapping analysis of maize plant type based on SNP molecular marker. Cellular and Molecular Biology (Noisy Le Grand, France), 2019, 65(2): 18-27.
[38]   Park K J, Sa K J, Kim B W, et al. Genetic mapping and QTL analysis for yield and agronomic traits with an F2: 3 population derived from a waxy corn × sweet corn cross. Genes & Genomics, 2014, 36(2): 179-189.
[39]   Tang Z X, Yang Z F, Hu Z Q, et al. Cytonuclear epistatic quantitative trait locus mapping for plant height and ear height in maize. Molecular Breeding, 2013, 31(1): 1-14.
doi: 10.1007/s11032-012-9762-3
[40]   Choi J K, Sa K J, Park D H, et al. Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers. Genes & Genomics, 2019, 41(6): 667-678.
[41]   Li X P, Zhou Z J, Ding J Q, et al. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Frontiers in Plant Science, 2016, 7: 833.
[42]   Cai H G, Chu Q, Gu R L, et al. Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Plant Breeding, 2012, 131(4): 502-510.
doi: 10.1111/pbr.2012.131.issue-4
[43]   Wang B B, Liu H, Liu Z P, et al. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biology, 2018, 18(1): 17.
doi: 10.1186/s12870-018-1233-5
[44]   Salvi S, Corneti S, Bellotti M, et al. Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biology, 2011, 11: 4.
doi: 10.1186/1471-2229-11-4
[45]   Wei M, Fu J, Li X, et al. Influence of dent corn genetic backgrounds on QTL detection for plant-height traits and their relationships in high-oil maize. Journal of Applied Genetics, 2009, 50(3): 225-234.
doi: 10.1007/BF03195676 pmid: 19638677
[46]   Lima M D L A, Souza C L, Bento D A V, et al. Mapping QTL for grain yield and plant traits in a tropical maize population. Molecular Breeding, 2006, 17(3): 227-239.
doi: 10.1007/s11032-005-5679-4
[47]   Zhang Z M, Zhao M J, Ding H P, et al. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russian Journal of Genetics, 2006, 42(3): 306-310.
doi: 10.1134/S1022795406030112
[48]   Sibov S T, de Souza C L, Garcia A A F, et al. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 2. Quantitative trait loci (QTL) for grain yield, plant height, ear height and grain moisture. Hereditas, 2004, 139(2): 107-115.
doi: 10.1111/j.1601-5223.2003.01667.x
[49]   Zhou Z Q, Zhang C S, Zhou Y, et al. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. BMC Genomics, 2016, 17(1): 1-15.
[50]   Zhou Z Q, Zhang C S, Lu X H, et al. Dissecting the genetic basis underlying combining ability of plant height related traits in maize. Frontiers in Plant Science, 2018, 9: 1117.
doi: 10.3389/fpls.2018.01117
[51]   尤诗婷, 邓策, 李会敏, 等. 玉米株高和穗位高的QTL定位. 河南农业科学, 2019, 48(6): 20-25.
[51]   You S T, Deng C, Li H M, et al. QTL mapping of plant height and ear height in maize. Journal of Henan Agricultural Sciences, 2019, 48(6): 20-25.
[52]   何坤辉, 常立国, 崔婷婷, 等. 多环境下玉米株高和穗位高的QTL定位. 中国农业科学, 2016, 49(8): 1443-1452.
[52]   He K H, Chang L G, Cui T T, et al. Mapping QTL for plant height and ear height in maize under multi-environments. Scientia Agricultura Sinica, 2016, 49(8): 1443-1452.
[53]   Li Y L, Dong Y B, Niu S Z, et al. The genetic relationship among plant-height traits found using multiple-trait QTL mapping of a dent corn and popcorn cross. Genome, 2007, 50(4): 357-364.
doi: 10.1139/G07-018
[54]   Schneeberger R, Tsiantis M, Freeling M, et al. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development (Cambridge, England), 1998, 125(15): 2857-2865.
doi: 10.1242/dev.125.15.2857
[55]   Zhao Y, Wang H S, Bo C, et al. Genome-wide association study of maize plant architecture using F1 populations. Plant Molecular Biology, 2019, 99(1-2): 1-15.
doi: 10.1007/s11103-018-0797-7
[56]   Vanous A, Gardner C, Blanco M, et al. Association mapping of flowering and height traits in germplasm enhancement of maize doubled haploid (GEM-DH) lines. The Plant Genome, 2018, 11(2): 170083.
doi: 10.3835/plantgenome2017.09.0083
[57]   李凯, 张晓祥, 管中荣, 等. 玉米株高和穗位高的全基因组关联分析. 玉米科学, 2017, 25(6): 1-7.
[57]   Li K, Zhang X X, Guan Z R, et al. Genome-wide association analysis of plant height and ear height in maize. Journal of Maize Sciences, 2017, 25(6): 1-7.
[58]   Liu H J, Wang X Q, Xiao Y J, et al. CUBIC: an atlas of genetic architecture promises directed maize improvement. Genome Biology, 2020, 21(1): 20.
doi: 10.1186/s13059-020-1930-x
[59]   Hu S L, Wang C L, Sanchez D L, et al. Gibberellins promote brassinosteroids action and both increase heterosis for plant height in maize (Zea mays L.). Frontiers in Plant Science, 2017, 8: 1039.
doi: 10.3389/fpls.2017.01039
[60]   Dell’Acqua M, Gatti D M, Pea G, et al. Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biology, 2015, 16: 167.
doi: 10.1186/s13059-015-0716-z
[61]   Yang N, Lu Y L, Yang X H, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 2014, 10(9): e1004573. DOI: 10.1371/journal.pgen.1004573.
doi: 10.1371/journal.pgen.1004573
[62]   Farfan I D B, de la Fuente G N, Murray S C, et al. Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics. PLoS One, 2015, 10(2): e0117737.
[63]   Negro S S, Millet E J, Madur D, et al. Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies. BMC Plant Biology, 2019, 19(1): 318.
doi: 10.1186/s12870-019-1926-4
[64]   Zhang Y, Wan J Y, He L, et al. Genome-wide association analysis of plant height using the maize F1 population. Plants, 2019, 8(10): 432.
doi: 10.3390/plants8100432
[65]   Gyawali A, Shrestha V, Guill K E, et al. Single-plant GWAS coupled with bulk segregant analysis allows rapid identification and corroboration of plant-height candidate SNPs. BMC Plant Biology, 2019, 19(1): 412.
doi: 10.1186/s12870-019-2000-y
[66]   Mazaheri M, Heckwolf M, Vaillancourt B, et al. Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC Plant Biology, 2019, 19(1): 45.
doi: 10.1186/s12870-019-1653-x pmid: 30704393
[67]   Lai X J, Schnable J C, Liao Z Q, et al. Genome-wide characterization of non-reference transposable element insertion polymorphisms reveals genetic diversity in tropical and temperate maize. BMC Genomics, 2017, 18(1): 702.
doi: 10.1186/s12864-017-4103-x
[68]   刘坤, 张雪海, 孙高阳, 等. 玉米株型相关性状的全基因组关联分析. 中国农业科学, 2018, 51(5): 821-834.
[68]   Liu K, Zhang X H, Sun G Y, et al. Genome-wide association studies of plant type traits in maize. Scientia Agricultura Sinica, 2018, 51(5): 821-834.
[69]   Peiffer J A, Romay M C, Gore M A, et al. The genetic architecture of maize height. Genetics, 2014, 196(4): 1337-1356.
doi: 10.1534/genetics.113.159152 pmid: 24514905
[70]   Becraft P W, Stinard P S, McCarty D R. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science, 1996, 273(5280): 1406-1409.
pmid: 8703079
[71]   Bensen R J, Johal G S, Crane V C, et al. Cloning and characterization of the maize An1 gene. The Plant Cell, 1995, 7(1): 75-84.
[72]   Makarevitch I, Thompson A, Muehlbauer G J, et al. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 2012, 7(1): e30798.
doi: 10.1371/journal.pone.0030798
[73]   Cassani E, Bertolini E, Cerino Badone F, et al. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Molecular Breeding, 2009, 24(4): 375-385.
doi: 10.1007/s11032-009-9298-3
[74]   Bolduc N, Hake S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. The Plant Cell, 2009, 21(6): 1647-1658.
doi: 10.1105/tpc.109.068221
[75]   Suzuki M, Latshaw S, Sato Y, et al. The Maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiology, 2008, 146(3): 1193-1206.
doi: 10.1104/pp.107.114108
[76]   Chen Z L, Li W, Gaines C, et al. Structural variation at the maize WUSCHEL1 locus alters stem cell organization in inflorescences. Nature Communications, 2021, 12: 2378.
doi: 10.1038/s41467-021-22699-8
[77]   Teng F, Zhai L H, Liu R X, et al. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. The Plant Journal, 2013, 73(3): 405-416.
doi: 10.1111/tpj.12038
[78]   Lawit S J, Wych H M, Xu D P, et al. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant & Cell Physiology, 2010, 51(11): 1854-1868.
[79]   Bommert P, Lunde C N, Nardmann J, et al. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development (Cambridge, England), 2005, 132(6): 1235-1245.
doi: 10.1242/dev.01671
[80]   Best N B, Hartwig T, Budka J, et al. Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiology, 2016, 171(4): 2633-2647.
doi: 10.1104/pp.16.00399
[81]   Avila L M, Cerrudo D, Swanton C, et al. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. Journal of Experimental Botany, 2016, 67(5): 1577-1588.
doi: 10.1093/jxb/erv554 pmid: 26767748
[82]   Phillips K A, Skirpan A L, Liu X, et al. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. The Plant Cell, 2011, 23(2): 550-566.
doi: 10.1105/tpc.110.075267
[83]   Kir G, Ye H X, Nelissen H, et al. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiology, 2015, 169(1): 826-839.
doi: 10.1104/pp.15.00367
[84]   Li Z X, Zhang X R, Zhao Y J, et al. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnology Journal, 2018, 16(1): 86-99.
doi: 10.1111/pbi.2018.16.issue-1
[85]   Helliwell C A, Chandler P M, Poole A, et al. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. PNAS, 2001, 98(4): 2065-2070.
pmid: 11172076
[86]   Wen T J, Schnable P S. Analyses of mutants of three genes that influence root hair development in Zea mays(Gramineae) suggest that root hairs are dispensable. American Journal of Botany, 1994, 81(7): 833-842.
doi: 10.1002/j.1537-2197.1994.tb15564.x
[87]   Sawers R J H, Linley P J, Gutierrez-Marcos J F, et al. The Elm1 (ZmHy2) gene of maize encodes a phytochromobilin synthase. Plant Physiology, 2004, 136(1): 2771-2781.
doi: 10.1104/pp.104.046417
[1] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[2] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[3] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[4] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[5] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[6] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[7] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[8] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[9] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[10] WANG You-hua,ZOU Wan-nong,LIU Xiao-qing,WANG Zhaohua,SUN Guo-qing. Global Patent Analysis and Technology Prospect of Genetically Modified Maize[J]. China Biotechnology, 2019, 39(12): 83-94.
[11] Ai-guo SU,Wei SONG,Shuai-shuai WANG,Jiu-ran ZHAO. Advance on Cytoplasmic Male Sterility and Fertility Restoration Genes in Maize[J]. China Biotechnology, 2018, 38(1): 108-114.
[12] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[13] You-hui TIAN,Xiang-yuan WAN. Cytobiology and Molecular Genetics Research Methods on Maize Anther Development[J]. China Biotechnology, 2018, 38(1): 88-99.
[14] XU Yuan-yuan, YU Han-bing, WU Fei-hua, WU Xiao-mei. Molecular Mechanisms of Antimicrobial Defenses and Resistance in Forest Trees in a Genomic Era[J]. China Biotechnology, 2017, 37(6): 114-123.
[15] SHI Li-ping, JI Jing, WANG Gang, JIN Chao, XIE Chao, DU Xi-long, GUAN Chung-feng, ZHANG Lie, LI Chen. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress[J]. China Biotechnology, 2016, 36(8): 31-37.