Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (12): 74-87    DOI: 10.13523/j.cb.2111001
    
Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits
QIN Wen-xuan1,2,LIU Xin1,2,LONG Yan1,2,3,DONG Zhen-ying1,2,**(),WAN Xiang-yuan1,2,3,**()
1 Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
Download: HTML   PDF(1458KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Maize yield is determined by the efficiency of plant capturing light energy and fixing CO2 into organic carbon compounds. Leaf angle (LA) is one of the important traits of plant architecture, and smaller leaf angle is beneficial to improving the photosynthetic efficiency, planting density, and ultimately the increase of the yield of maize. Previous studies have shown that LA of maize is a complex quantitative trait controlled by multiple genes with higher heritability and significant contribution of additive genetic effects. At present, hundreds of quantitative trait loci (QTLs) related to LA in maize have been identified by QTL mapping and genome-wide association study (GWAS). Combined with mutant analysis, dozens of key genes regulating LA have also been cloned, which provides an important clue for understanding the genetic mechanism of LA in maize. Previous studies have used different populations, analysis models and even reference genome versions for maize LA genetic analysis, the identified QTLs were quite different in those studies, which hampered the understanding of genetic structure of LA traits. Therefore, in this study, we summarized the mapped QTLs and associated single nucleotide polymorphisms (SNPs) related to LA and constructed a consistent map, and then identified the genetic hot spots of LA. Finally, the cloned functional genes regulating LA were analyzed and classified. Our work not only provides primary data for understanding the genetic structure of maize LA and promoting the cloning of the candidate genes, but also provides useful molecular markers for molecular marker-assisted breeding and maize yield improvement.



Key wordsMaize      Leaf angle      Quantitative trait loci(QTLs)      Genome-wide association analysis(GWAS)      Genetic structure     
Received: 31 October 2021      Published: 13 January 2022
ZTFLH:  Q819  
Corresponding Authors: Zhen-ying DONG,Xiang-yuan WAN     E-mail: zydong@ustb.edu.cn;wanxiangyuan@ustb.edu.cn
Cite this article:

QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits. China Biotechnology, 2021, 41(12): 74-87.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2111001     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I12/74

Fig.1 Chromosomal distribution of leaf angle-related QTLs and SNPs in maize genome
Fig.2 Distribution of leaf angle-related QTL and SNP hotspots and the cloned genes in maize genome The genes located in the overlapping intervals of QTL hotspots and the SNP hotspots, only in the QTL hotspots, only in the SNP hotspots, or outside of the hotspots were labeled in red, green, blue or black respectively
途径1 基因名称 基因ID 位置 /bp 编码蛋白及功能注解 参考文献
1 Kn1 Zm00001d033859 Chr1: 276073335~276081242 KNOX转录因子 [60]
LG1 Zm00001d002005 Chr2: 4230854~4234535 SPL转录因子 [17]
WAB1 Zm00001d005737 Chr2: 185422359~185423189 TCP家族转录因子 [63]
LG3 Zm00001d040611 Chr3: 53767845~53777713 KNOX转录因子 [64]
LG2 Zm00001d042777 Chr3: 179387727~179396447 bZIP转录因子 [65]
YABBY9 Zm00001d013895 Chr5: 24089489~24093556 C2C2-yabby转录因子 [66]
YABBY15 Zm00001d017391 Chr5: 194316184~194319929 C2C2-yabby转录因子 [66]
LBL1 Zm00001d035256 Chr6: 17759389~17765846 基因沉默3同源基因抑制因子 [83]
RS1 Zm00001d018742 Chr7: 3845026~3851209 KNOX转录因子 [13]
MWP1 Zm00001d020384 Chr7: 110525083~110531709 KANADI 转录因子 [67]
LG4 Zm00001d010948 Chr8: 134760586~134766141 KNOX转录因子 [64]
LGN-R Zm00001d045945 Chr9: 48527705~48530228 受体样丝氨酸/苏氨酸蛋白激酶 [84]
RLD1 Zm00001d048527 Chr9: 157815873~157824341 HD-ZIPⅢ蛋白 [20]
YABBY14 Zm00001d025944 Chr10: 134353026~134355488 C2C2-yabby转录因子 [66]
2 DRL1 Zm00001d028216 Chr1: 26771165~26776231 CRC同源转录调控因子 [56]
DRL2 Zm00001d048083 Chr9: 149627346~149632516 CRC同源转录调控因子 [56]
3 ZmDWF4 Zm00001d028325 Chr1: 30793737~30799897 甾体22-α-羟化酶 [57]
ZmPGP1 Zm00001d031871 Chr1: 204748411~204755635 ABC转运蛋白家族成员 [58]
ZmBRD1 Zm00001d033180 Chr1: 253162491~253166753 油菜素类固醇C-6氧化酶 [59]
ZmAS1 Zm00001d033981 Chr1: 279982395~279986186 硫酸腺苷酰转移酶 [61]
ZmIBH1-1 Zm00001d001982 Chr2: 3891754~3892380 bHLH转录因子 [61]
ZmILI1 Zm00001d002121 Chr2: 6144651~6145983 bHLH转录因子 [62]
ZmRAVL1 Zm00001d002562 Chr2: 15448580~15449809 B3结构域转录调控因子 [12]
ZmCLA4 Zm00001d049174 Chr4: 19153020~19159545 EAR结构域转录抑制因子 [51]
NA2 Zm00001d014887 Chr5: 67026171~67030023 24-亚甲基烯醇异构酶/还原酶 [85]
DIL1 Zm00001d038087 Chr6: 147379164~147385725 AP2-like转录因子 [86]
ZmBRI1a Zm00001d011721 Chr8: 159899428~159902796 油菜素内脂受体蛋白 [87]
ZmBBC1 Zm00001d011992 Chr8: 166018999~166021525 60S核糖体蛋白L13 [61]
ZmACS7 Zm00001d026060 Chr10: 137296427~137304511 1-氨基环丙烷-1-羧酸合酶7 [68]
其他 TAC1 Zm00001d006184 Chr2: 200972420~200977073 功能未知功能蛋白质 [49]
Table 1 Summary of the cloned genes regulating leaf angle in maize
染色体 QTL数目 SNP数目 QTL热点区间/Mb
(重复检测次数)1
SNP热点区间/Mb
(区间SNP数目)2
定位区间已知基因
Chr1 63 41 8.517~16.560 (3)
24.101~32.250 (6)
35.420~38.562 (3)
209.291~211.39 (3)
213.131~218.36 (3)
276.046~283.653 (3)
25.771~30.527 (6)
302.697~304.666 (8)
DRL1
ZmDWF4
ZmAS1
Kn1
染色体 QTL数目 SNP数目 QTL热点区间/Mb
(重复检测次数)1
SNP热点区间/Mb
(区间SNP数目)2
定位区间已知基因
Chr2 41 28 0.958~4.661(8)
185.669~187.559 (3)
2.021~15.157 (16) ZMIBH1-1
LG1
ZMILI1
Chr3 32 47 110.332~119.83 (3)
179.372~186.048 (5)
157.047~163.722 (10)
173.526~180.267 (12)
LG2
Chr4 20 21 152.233~159.035 (3) / /
Chr5 30 51 92.435~145.816 (4)
154.201~161.812 (3)
1.323~5.070 (7)
64.477~67.139 (5)
198.111~201.703 (5)
219.127~223.345 (6)
NA2
Chr6 15 20 / / /
Chr7 33 19 134.113~152.391 (4) / /
Chr8 40 40 72.390~102.866 (3)
138.897~140.50 (3)
172.500~176.863 (4)
1.649~7.927 (7)
162.150~172.448 (10)
ZmBBC1
Chr9 16 34 / 44.387~47.257 (5)
107.981~113.794 (6)
143.047~149.845 (13)
DRL2
Chr10 18 21 / 143.226~148.396 (11) /
Table S1 Summary of collected leaf angle-related QTLs and SNPs and identification of the genetic mapping hotspots in maize
[1]   赵久然, 王帅, 李明, 等. 玉米育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19(3): 435-446.
[1]   Zhao J R, Wang S, Li M, et al. Current status and perspective of maize breeding. Journal of Plant Genetic Resources, 2018, 19(3): 435-446.
[2]   Yan J B, Warburton M, Crouch J. Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Science, 2011, 51(2): 433-449.
doi: 10.2135/cropsci2010.04.0233
[3]   赵久然, 孙世贤. 对超级玉米育种目标及技术路线的再思考. 玉米科学, 2007, 15(1): 21-23, 28.
[3]   Zhao J R, Sun S X. Re-thinking on breeding objective and technical route of super maize. Journal of Maize Sciences, 2007, 15(1): 21-23, 28.
[4]   Pendleton J W, Smith G E, Winter S R, et al. Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis. Agronomy Journal, 1968, 60(4): 422-424.
doi: 10.2134/agronj1968.00021962006000040027x
[5]   Duvick D N. Genetic progress in yield of united states maize (Zea mays L.). Maydica, 2005, 50(3-4): 193-202.
[6]   Luo N, Wang X Y, Hou J M, et al. Agronomic optimal plant density for yield improvement in the major maize regions of China. Crop Science, 2020, 60(3): 1580-1590.
doi: 10.1002/csc2.v60.3
[7]   程绍义, 于翠芳, 刘绍棣. 紧凑型玉米株型及生理特性研究. 华北农学报, 1990, 5(3): 20-27.
[7]   Cheng S Y, Yu C F, Liu S D. Studies on the shape and the physiological characteristics of compact - type maize. Acta Agriculturae Boreali-Sinica, 1990, 5(3): 20-27.
[8]   张泽民, 贾长柱. 玉米株型对遗传增益的影响. 遗传, 1997, 19(2): 31-34.
[8]   Zhang Z M, Jia C Z. Effects of plant-type on genetic gain in maize. Hereditas(Beijing), 1997, 19(2): 31-34.
[9]   Monir M M, Zhu J. Dominance and epistasis interactions revealed as important variants for leaf traits of maize NAM population. Frontiers in Plant Science, 2018, 9: 627.
doi: 10.3389/fpls.2018.00627 pmid: 29967625
[10]   Tian F, Bradbury P J, Brown P J, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 2011, 43(2): 159-162.
doi: 10.1038/ng.746
[11]   Maldonado C, Mora F, Scapim C A, et al. Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4. PLoS One, 2019, 14(3): e0212925.
doi: 10.1371/journal.pone.0212925
[12]   Tian J G, Wang C L, Xia J L, et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 2019, 365(6454): 658-664.
doi: 10.1126/science.aax5482
[13]   Becraft P W, Freeling M. Genetic analysis of Rough sheath1 developmental mutants of maize. Genetics, 1994, 136(1): 295-311.
pmid: 8138166
[14]   Sylvester A W, Cande W Z, Freeling M. Division and differentiation during normal and liguleless-1 maize leaf development. Development (Cambridge, England), 1990, 110(3): 985-1000.
doi: 10.1242/dev.110.3.985
[15]   Harper L, Freeling M. Interactions of liguleless1 and liguleless2 function during ligule induction in maize. Genetics, 1996, 144(4): 1871-1882.
pmid: 8978070
[16]   Becraft P W, Freeling M. Sectors of liguleless-1 tissue interrupt an inductive signal during maize leaf development. The Plant Cell, 1991, 3(8): 801-807.
[17]   Becraft P W, Bongard-Pierce D K, Sylvester A W, et al. The liguleless-1 gene acts tissue specifically in maize leaf development. Developmental Biology, 1990, 141(1): 220-232.
pmid: 2391003
[18]   Kong F Y, Zhang T T, Liu J S, et al. Regulation of leaf angle by auricle development in maize. Molecular Plant, 2017, 10(3): 516-519.
doi: 10.1016/j.molp.2017.02.001
[19]   郑奔, 周冰莹, 吴刚, 等. 植物叶片近-远轴极性建成研究进展. 植物生理学报, 2015, 51(12): 2091-2100.
[19]   Zheng B, Zhou B Y, Wu G, et al. Advance in the study of leaf adaxial-abaxial polarity development in plants. Plant Physiology Journal, 2015, 51(12): 2091-2100.
[20]   Juarez M T, Kui J S, Thomas J, et al. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 2004, 428(6978): 84-88.
doi: 10.1038/nature02363
[21]   Ning J, Zhang B C, Wang N L, et al. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. The Plant Cell, 2011, 23(12): 4334-4347.
doi: 10.1105/tpc.111.093419
[22]   Mantilla-Perez M B, Salas Fernandez M G. Differential manipulation of leaf angle throughout the canopy: current status and prospects. Journal of Experimental Botany, 2017, 68(21-22): 5699-5717.
doi: 10.1093/jxb/erx378 pmid: 29126242
[23]   Luo X Y, Zheng J S, Huang R Y, et al. Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Reports, 2016, 35(12): 2423-2433.
doi: 10.1007/s00299-016-2052-5
[24]   童继平, 韩傲男, 王胜军, 等. 作物数量性状研究进展. 生物技术进展, 2011, 1(2): 98-104.
[24]   Tong J P, Han A N, Wang S J, et al. Research progress in DNA marker analysis of crop quantitative character. Current Biotechnology, 2011, 1(2): 98-104.
[25]   Ku L X, Sun Z H, Wang C L, et al. QTL mapping and epistasis analysis of brace root traits in maize. Molecular Breeding, 2012, 30(2): 697-708.
doi: 10.1007/s11032-011-9655-x
[26]   Liu X H, Tan Z B, Rong T Z. Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica, 2009, 167(2): 229-235.
doi: 10.1007/s10681-008-9874-3
[27]   Liu Y, Wang L W, Sun C L, et al. Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theoretical and Applied Genetics, 2014, 127(5): 1019-1037.
doi: 10.1007/s00122-014-2276-0
[28]   Ku L X, Zhao W M, Zhang J, et al. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theoretical and Applied Genetics, 2010, 121(5): 951-959.
doi: 10.1007/s00122-010-1364-z pmid: 20526576
[29]   王会涛, 柳华峰, 郑耀刚, 等. 玉米叶型相关性状QTL定位及上位性效应分析. 分子植物育种, 2018, 16(15): 4955-4963.
[29]   Wang H T, Liu H F, Zheng Y G, et al. QTL location and epistatic effect analysis of related traits of leaf type in maize. Molecular Plant Breeding, 2018, 16(15): 4955-4963.
[30]   Shi Y, Wang X B, Guo S L, et al. Detection of epistatic and environmental interaction QTLs for leaf orientation-related traits in maize. Plant Breeding, 2017, 136(1): 33-40.
doi: 10.1111/pbr.2017.136.issue-1
[31]   Dzievit M J, Li X R, Yu J M. Dissection of leaf angle variation in maize through genetic mapping and meta-analysis. The Plant Genome, 2019, 12(1): 180024.
doi: 10.3835/plantgenome2018.05.0024
[32]   Hou X B, Liu Y H, Xiao Q L, et al. Genetic analysis for canopy architecture in an F2: 3 population derived from two-type foundation parents across multi-environments. Euphytica, 2015, 205(2): 421-440.
doi: 10.1007/s10681-015-1401-8
[33]   Ku L X, Ren Z Z, Chen X, et al. Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize (Zea mays L.). Molecular Breeding, 2016, 36(5): 1-16.
doi: 10.1007/s11032-015-0425-z
[34]   Ding J Q, Zhang L Y, Chen J F, et al. Genomic dissection of leaf angle in maize (Zea mays L.) using a four-way cross mapping population. PLoS One, 2015, 10(10): e0141619. DOI: 10.1371/journal.pone.0141619.
doi: 10.1371/journal.pone.0141619
[35]   Chen X N, Xu D, Liu Z, et al. Identification of QTL for leaf angle and leaf space above ear position across different environments and generations in maize (Zea mays L.). Euphytica, 2015, 204(2): 395-405.
doi: 10.1007/s10681-015-1351-1
[36]   Zhang N, Huang X Q. Mapping quantitative trait loci and predicting candidate genes for leaf angle in maize. PLoS One, 2021, 16(1): e0245129.
doi: 10.1371/journal.pone.0245129 pmid: 33406127
[37]   Yi Q, Hou X B, Liu Y H, et al. QTL analysis for plant architecture-related traits in maize under two different plant density conditions. Euphytica, 2019, 215(9): 1-25.
doi: 10.1007/s10681-018-2319-8
[38]   Wang H W, Liang Q J, Li K, et al. QTL analysis of ear leaf traits in maize (Zea mays L.) under different planting densities. The Crop Journal, 2017, 5(5): 387-395.
doi: 10.1016/j.cj.2017.05.001
[39]   Zhao X Q, Fang P, Zhang J W, et al. QTL mapping for six ear leaf architecture traits under water-stressed and well-watered conditions in maize (Zea mays L.). Plant Breeding, 2018, 137(1): 60-72.
doi: 10.1111/pbr.2018.137.issue-1
[40]   Mickelson S M, Stuber C S, Senior L, et al. Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize. Crop Science, 2002, 42(6): 1902-1909.
doi: 10.2135/cropsci2002.1902
[41]   Wassom J J. Quantitative trait loci for leaf angle, leaf width, leaf length, and plant height in a maize (Zea mays L) B73 × Mo17 population. Maydica, 2013, 58(3): 318-321.
[42]   Pan Q C, Xu Y C, Li K, et al. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiology, 2017, 175(2): 858-873.
doi: 10.1104/pp.17.00709
[43]   常立国, 何坤辉, 刘建超, 等. 不同环境条件下玉米叶夹角的QTL定位. 玉米科学, 2016, 24(4): 49-55.
[43]   Chang L G, He K H, Liu J C, et al. Mapping of QTLs for leaf angle in maize under different environments. Journal of Maize Sciences, 2016, 24(4): 49-55.
[44]   张姿丽, 刘鹏飞, 蒋锋, 等. 基于四交群体的玉米叶夹角和叶向值QTL定位分析. 中国农业大学学报, 2014, 19(4): 7-16.
[44]   Zhang Z L, Liu P F, Jiang F, et al. QTL mapping for leaf angle and leaf orientation in maize using a four-way cross population. Journal of China Agricultural University, 2014, 19(4): 7-16.
[45]   于永涛, 张吉民, 石云素, 等. 利用不同群体对玉米株高和叶片夹角的QTL分析. 玉米科学, 2006, 14(2): 88-92.
[45]   Yu Y T, Zhang J M, Shi Y S, et al. QTL analysis for plant height and leaf angle by using different populations of maize. Journal of Maize Sciences, 2006, 14(2): 88-92.
[46]   刘正, 余婷婷, 梅秀鹏, 等. 玉米穗上叶夹角和叶间距的QTL定位. 农业生物技术学报, 2014, 22(2): 177-187.
[46]   Liu Z, Yu T T, Mei X P, et al. QTL mapping for leaf angle and leaf space above ear position in maize(Zea mays L.). Journal of Agricultural Biotechnology, 2014, 22(2): 177-187.
[47]   张君. 玉米叶夹角基因ZmCLA4的图位克隆与功能分析. 郑州: 河南农业大学, 2014.
[47]   Zhang J. Map-based cloning and functional analysis of gene ZmCLA4 controlling leaf angle in mzize(Zea mays L.). Zhengzhou: Henan Agricultural University, 2014.
[48]   路明, 周芳, 谢传晓, 等. 玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析. 遗传, 2007, 29(9): 1131-1138.
[48]   Lu M, Zhou F, Xie C X, et al. Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas, 2007, 29(9): 1131-1138.
[49]   Ku L X, Wei X M, Zhang S F, et al. Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PLoS One, 2011, 6(6): e20621. DOI: 10.1371/journal.pone.0020621.
doi: 10.1371/journal.pone.0020621
[50]   Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112-1115.
doi: 10.1126/science.1178534 pmid: 19965430
[51]   Zhang J, Ku L X, Han Z P, et al. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). Journal of Experimental Botany, 2014, 65(17): 5063-5076.
doi: 10.1093/jxb/eru271 pmid: 24987012
[52]   唐登国. 玉米穗行数、雄穗分枝数及叶片冠层结构性状的QTL定位. 雅安: 四川农业大学, 2018.
[52]   Tang D G. QTL mapping of maize kernel row number, tassel branch number and leaf canopy structure traits. Yaan, China: Sichuan Agricultural University, 2018.
[53]   Li C H, Li Y X, Shi Y S, et al. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS One, 2015, 10(3): e0121624. DOI: 10.1371/journal.pone.0121624.
doi: 10.1371/journal.pone.0121624
[54]   Ma L L, Guan Z R, Zhang Z T, et al. Identification of quantitative trait loci for leaf-related traits in an IBM Syn10 DH maize population across three environments. Plant Breeding, 2018, 137(2): 127-138.
doi: 10.1111/pbr.2018.137.issue-2
[55]   郭书磊, 张君, 齐建双, 等. 玉米叶形相关性状的Meta-QTL及候选基因分析. 植物学报, 2018, 53(4): 487-501.
[55]   Guo S L, Zhang J, Qi J S, et al. Analysis of Meta-quantitative trait loci and their candidate genes related to leaf shape in maize. Chinese Bulletin of Botany, 2018, 53(4): 487-501.
[56]   Strable J, Wallace J G, Unger-Wallace E, et al. MaizeYABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. The Plant Cell, 2017, 29(7): 1622-1641.
doi: 10.1105/tpc.16.00477 pmid: 28698237
[57]   Liu T S, Zhang J P, Wang M Y, et al. Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.). Plant Cell Reports, 2007, 26(12): 2091-2099.
doi: 10.1007/s00299-007-0418-4
[58]   Wei L, Zhang X, Zhang Z H, et al. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture. Heredity, 2018, 121(1): 75-86.
doi: 10.1038/s41437-018-0056-3
[59]   Makarevitch I, Thompson A, Muehlbauer G J, et al. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 2012, 7(1): e30798.
doi: 10.1371/journal.pone.0030798
[60]   Vollbrecht E, Veit B, Sinha N, et al. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature, 1991, 350(6315): 241-243.
doi: 10.1038/350241a0
[61]   Cao Y Y, Zeng H X, Ku L X, et al. ZmIBH1-1 regulates plant architecture in maize. Journal of Experimental Botany, 2020, 71(10): 2943-2955.
doi: 10.1093/jxb/eraa052
[62]   Ren Z Z, Wu L C, Ku L X, et al. ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize. Plant Biotechnology Journal, 2020, 18(4): 881-883.
doi: 10.1111/pbi.v18.4
[63]   Hay A, Hake S. The dominant mutant Wavy auricle in blade1 disrupts patterning in a lateral domain of the maize leaf. Plant Physiology, 2004, 135(1): 300-308.
doi: 10.1104/pp.103.036707
[64]   Fowler J E, Freeling M. Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations. Developmental Genetics, 1996, 18(3): 198-222.
pmid: 8631155
[65]   Walsh J, Waters C A, Freeling M. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes & Development, 1998, 12(2): 208-218.
doi: 10.1101/gad.12.2.208
[66]   Juarez M T, Twigg R W, Timmermans M C P. Specification of adaxial cell fate during maize leaf development. Development, 2004, 131(18): 4533-4544.
doi: 10.1242/dev.01328
[67]   Candela H, Johnston R, Gerhold A, et al. The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. The Plant Cell, 2008, 20(8): 2073-2087.
doi: 10.1105/tpc.108.059709
[68]   Li H C, Wang L J, Liu M S, et al. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7. Plant Physiology, 2020, 183(3): 1184-1199.
doi: 10.1104/pp.19.01421
[69]   刘鹏飞, 蒋锋, 王汉宁, 等. 玉米叶夹角和叶向值的QTL定位. 核农学报, 2012, 26(2): 231-237.
[69]   Liu P F, Jiang F, Wang H N, et al. Qtl mapping for leaf angle and leaf orientation in corn. Journal of Nuclear Agricultural Sciences, 2012, 26(2): 231-237.
[70]   赵宇慧, 李秀秀, 陈倬, 等. 生物信息学分析方法Ⅰ: 全基因组关联分析概述. 植物学报, 2020, 55(6): 715-732.
[70]   Zhao Y H, Li X X, Chen Z, et al. An overview of genome-wide association studies in plants. Chinese Bulletin of Botany, 2020, 55(6): 715-732.
[71]   Kang H M, Zaitlen N A, Wade C M, et al. Efficient control of population structure in model organism association mapping. Genetics, 2008, 178(3): 1709-1723.
doi: 10.1534/genetics.107.080101
[72]   Aulchenko Y S, de Koning D J, Haley C. Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics, 2007, 177(1): 577-585.
doi: 10.1534/genetics.107.075614 pmid: 17660554
[73]   Lippert C, Listgarten J, Liu Y, et al. FaST linear mixed models for genome-wide association studies. Nature Methods, 2011, 8(10): 833-835.
doi: 10.1038/nmeth.1681
[74]   Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nature Methods, 2014, 11(4): 407-409.
doi: 10.1038/nmeth.2848
[75]   冯建英, 温阳俊, 张瑾, 等. 植物关联分析方法的研究进展. 作物学报, 2016, 42(7): 945-956.
doi: 10.3724/SP.J.1006.2016.00945
[75]   Feng J Y, Wen Y J, Zhang J, et al. Advances on methodologies for genome-wide association studies in plants. Acta Agronomica Sinica, 2016, 42(7): 945-956.
doi: 10.3724/SP.J.1006.2016.00945
[76]   Elshire R J, Glaubitz J C, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 2011, 6(5): e19379.
doi: 10.1371/journal.pone.0019379
[77]   Yu J M, Buckler E S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006, 17(2): 155-160.
doi: 10.1016/j.copbio.2006.02.003
[78]   Lu S, Zhang M, Zhang Z, et al. Screening and verification of genes associated with leaf angle and leaf orientation value in inbred maize lines. PLoS One, 2018, 13(12): e0208386.
doi: 10.1371/journal.pone.0208386
[79]   孙娇, 赵美爱, 潘顺祥, 等. 玉米叶夹角的全基因组关联分析. 华北农学报, 2018, 33(1): 60-64.
[79]   Sun J, Zhao M A, Pan S X, et al. Correlation analysis of maize leaf angle with genome-wide association analysis. Acta Agriculturae Boreali-Sinica, 2018, 33(1): 60-64.
[80]   Hu S L, Wang C L, Sanchez D L, et al. Gibberellins promote brassinosteroids action and both increase heterosis for plant height in maize (Zea mays L.). Frontiers in Plant Science, 2017, 8: 1039.
doi: 10.3389/fpls.2017.01039
[81]   Lu S, Zhang M, Zhang Z, et al. Screening and verification of genes associated with leaf angle and leaf orientation value in inbred maize lines. PLoS One, 2018, 13(12): e0208386.
doi: 10.1371/journal.pone.0208386
[82]   Wang B B, Lin Z C, Li X, et al. Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 2020, 52(6): 565-571.
doi: 10.1038/s41588-020-0616-3
[83]   Timmermans M C, Schultes N P, Jankovsky J P, et al. Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development (Cambridge, England), 1998, 125(15): 2813-2823.
doi: 10.1242/dev.125.15.2813
[84]   Moon J, Candela H, Hake S. The Liguleless narrow mutation affects proximal-distal signaling and leaf growth. Development (Cambridge, England), 2013, 140(2): 405-412.
doi: 10.1242/dev.085787
[85]   Best N B, Hartwig T, Budka J, et al. nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiology, 2016, 171(4): 2633-2647.
doi: 10.1104/pp.16.00399
[86]   Jiang F K, Guo M, Yang F, et al. Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize. PLoS One, 2012, 7(5): e37040.
doi: 10.1371/journal.pone.0037040
[87]   Kir G, Ye H, Nelissen H, et al. RNAi knockdown of BRI1 in maize (Zea mays) reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiology, 2015, 184(4): 1-44.
doi: 10.1104/pp.20.01131
[88]   Muehlbauer G J, Fowler J E, Girard L, et al. Ectopic expression of the maize homeobox gene Liguleless3 alters cell fates in the leaf. Plant Physiology, 1999, 119(2): 651-662.
pmid: 9952462
[89]   Nogueira F T S, Madi S, Chitwood D H, et al. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes & Development, 2007, 21(7): 750-755.
doi: 10.1101/gad.1528607
[90]   Wang L, Xu Y Y, Zhang C, et al. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS One, 2008, 3(10): e3521.
doi: 10.1371/journal.pone.0003521
[91]   Cao H P, Chen S K. Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regulation, 1995, 16(2): 189-196.
doi: 10.1007/BF00029540
[92]   Wada K, Marumo S, Ikekawa N, et al. Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings. Plant Cell Physiology, 1982, 22(2): 323-325.
[93]   Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell, 2000, 12(9): 1591-1606.
doi: 10.1105/tpc.12.9.1591
[94]   Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, et al. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal, 2002, 32(4): 495-508.
doi: 10.1046/j.1365-313X.2002.01438.x
[95]   Tanabe S, Ashikari M, Fujioka S, et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. The Plant Cell, 2005, 17(3): 776-790.
doi: 10.1105/tpc.104.024950
[96]   Fellner M, Horton L A, Cocke A E, et al. Light interacts with auxin during leaf elongation and leaf angle development in young corn seedlings. Planta, 2003, 216(3): 366-376.
pmid: 12520327
[97]   Tong H N, Xiao Y H, Liu D P, et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. The Plant Cell, 2014, 26(11): 4376-4393.
doi: 10.1105/tpc.114.132092
[98]   Dou D D, Han S B, Cao L R, et al. CLA4 regulates leaf angle through multiple hormone signaling pathways in maize. Journal of Experimental Botany, 2021, 72(5): 1782-1794.
doi: 10.1093/jxb/eraa565
[1] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[2] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[3] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[4] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[5] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[6] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[7] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[8] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[9] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[10] WANG You-hua,ZOU Wan-nong,LIU Xiao-qing,WANG Zhaohua,SUN Guo-qing. Global Patent Analysis and Technology Prospect of Genetically Modified Maize[J]. China Biotechnology, 2019, 39(12): 83-94.
[11] Ai-guo SU,Wei SONG,Shuai-shuai WANG,Jiu-ran ZHAO. Advance on Cytoplasmic Male Sterility and Fertility Restoration Genes in Maize[J]. China Biotechnology, 2018, 38(1): 108-114.
[12] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[13] You-hui TIAN,Xiang-yuan WAN. Cytobiology and Molecular Genetics Research Methods on Maize Anther Development[J]. China Biotechnology, 2018, 38(1): 88-99.
[14] SHI Li-ping, JI Jing, WANG Gang, JIN Chao, XIE Chao, DU Xi-long, GUAN Chung-feng, ZHANG Lie, LI Chen. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress[J]. China Biotechnology, 2016, 36(8): 31-37.
[15] ZHANG Cai-bo, ZHANG Yan-hua, LIU He-yang, WANG Han-yu, ZENG Wen-bing, RONG Ting-zhao, CAO Mo-ju. Construction of Fingerprinting Using SRAP and SSR Markers for Maize Inbred Lines by Space Flight[J]. China Biotechnology, 2013, 33(10): 103-110.