Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (8): 84-91    DOI: 10.13523/j.cb.20180811
    
Advances of Betalains Biosynthesis and Metabolic Regulation
Si-li YU1,Xue LIU1,Zhao-yu ZHANG1,Hong-jian YU2,Guang-rong ZHAO1,**()
1. Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300350, China
2. Ubasio Biotech Co., Ltd., Tianjin 300450, China
Download: HTML   PDF(673KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Betalains is a kind of botanical water-soluble natural nitrogen-containing pigments, which used as food additives and cosmetics. Betalains and anthocyanin pigments do not coexist in a same plant, and their metabolic pathway is an important phytochemical classification index. Betalains have potential pharmacological effects of anti-tumor, anti-oxidation, anti-malaria and liver protective, which have promoted the further study of them. The key enzymes of betalains synthesis pathway and research progress of synthetic biology strategy for betalains production at home and abroad are reviewed. It provides a reference for establishing synthetic biological method of betalains production.



Key wordsBetalains biosynthesis      Synthetic biology      Metabolic engineering      Betanin      Betaxanthin     
Received: 08 April 2018      Published: 11 September 2018
ZTFLH:  Q946  
Corresponding Authors: Guang-rong ZHAO     E-mail: grzhao@tju.edu.cn
Cite this article:

Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation. China Biotechnology, 2018, 38(8): 84-91.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180811     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I8/84

Fig.1 Biosynthesis pathway of betalains 5-GT: Betanidin-5-O-glycosyltransferase; 6-GT: Betanidin-6-O-glycosyltransferase
分类 结构 R基团 色素名称 植物来源
甜菜红素 R = H 甜菜红苷配基 甜菜
R = Glc 甜菜红苷 甜菜
R = H 2-脱羧甜菜红苷 甜菜
R = Malonyl 6'-O-丙二酰-2-脱羧甜菜红苷 甜菜
R = ρ-Coumaroyl 松叶菊红苷Ⅰ 松叶菊
R = Feruloyl 松叶菊红苷Ⅱ 松叶菊
R = H 叶子花紫色苷Ⅰ 叶子花
R = ρ-Coumaroyl 叶子花紫色苷Ⅲ 叶子花
R = H 苋菜红素 尾穗苋
R = ρ-Coumaroyl 鸡冠花红素Ⅰ 鸡冠花
R = Feruloyl 鸡冠花红素Ⅱ 鸡冠花
R = H 千日红素Ⅰ 千日红
R = ρ-Coumaroyl 千日红素Ⅱ 千日红
R = Feruloyl 千日红素Ⅲ 千日红
R = Sinapoyl 千日红素Ⅳ 千日红
甜菜黄素 R = Aspartic acid 天冬氨酸-甜菜黄素 紫茉莉
R = Tyramine 酪胺-甜菜黄素 紫茉莉
R = Dopamine 多巴胺-甜菜黄素 紫茉莉
R = Histamine 组胺-甜菜黄素 紫茉莉
R = Tyrosine 酪氨酸-甜菜黄素 大花马齿苋
R = Glycine 甘氨酸-甜菜黄素 大花马齿苋
R = Proline 脯氨酸-甜菜黄素 黎果仙人掌
R = Hydroxyproline 羟脯氨酸-甜菜黄素 黎果仙人掌
Table 1 Common betalains and their source
植物宿主及培养方式 引入基因及来源 产物及含量(mg/g鲜重) 参考文献
烟草,细胞悬浮培养 TYR(香菇)
DODA(紫茉莉)
甜菜黄素1.02 [38]
烟草,细胞悬浮培养 CYP76AD1(甜菜)
DODA(甜菜)
cDOPA5GT(紫茉莉)
甜菜红苷0.05 [35]
烟草,细胞悬浮培养 CYP76AD6(甜菜)
DODA(甜菜)
甜菜黄素0.1 [35]
烟草,愈伤组织培养 CYP76AD1(甜菜)
DODA(甜菜)
cDOPA5GT(紫茉莉)
甜菜红苷0.33 [35]
茄子,愈伤组织培养 CYP76AD1(甜菜)
DODA(甜菜)
cDOPA5GT(紫茉莉)
甜菜红苷0.25 [35]
番茄,愈伤组织培养 CYP76AD1(甜菜)
DODA(甜菜)
cDOPA5GT(紫茉莉)
甜菜红苷0.12 [35]
马铃薯,愈伤组织培养 CYP76AD1(甜菜)
DODA(甜菜)
cDOPA5GT(紫茉莉)
甜菜红苷0.07 [35]
Table 2 Synthesis of betalains from non-caryophyllales plants
[1]   Khan M I, Giridhar P . Plant betalains: chemistry and biochemistry. Phytochemistry, 2015,117(1):267-295.
doi: 10.1016/j.phytochem.2015.06.008 pmid: 26101148
[2]   Ninfali P, Antonini E, Frati A , et al. C-Glycosyl flavonoids from Beta vulgaris Cicla and betalains from Beta vulgaris rubra: antioxidant, anticancer and antiinflammatory activities-a review. Phytotherapy Research: PTR, 2017,31(6):871-884.
doi: 10.1002/ptr.5819
[3]   Stafford H A . Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Science, 1994,101(2):91-98.
doi: 10.1016/0168-9452(94)90244-5
[4]   Steiner U, Schliemann W, Böhm H , et al. Tyrosinase involved in betalain biosynthesis of higher plants. Planta, 1999,208(1):114-124.
doi: 10.1007/s004250050541
[5]   Gandia-Herrero F, Garcia-Carmona F, Escribano J . Purification and characterization of a latent polyphenol oxidase from beet root (Beta vulgaris L.). Journal of Agricultural and Food Chemistry, 2004,52(3):609-615.
doi: 10.1021/jf034381m
[6]   Gao Z J, Han X H, Xiao X G . Purification and characterisation of polyphenol oxidase from red Swiss chard (Beta vulgaris subspecies cicla) leaves. Food Chemistry, 2009,117(2):342-348.
doi: 10.1016/j.foodchem.2009.04.013
[7]   Wang C Q, Song H, Gong X Z , et al. Correlation of tyrosinase activity and betacyanin biosynthesis induced by dark in C3 halophyte Suaeda salsa seedlings. Plant Science, 2007,173(5):487-494.
doi: 10.1016/j.plantsci.2007.07.010
[8]   Mueller L A, Hinz U, Zrÿd J P . Characterization of a tyrosinase from Amanita muscaria involved in betalain biosynthesis . Phytochemistry, 1996,42(6):1511-1515.
doi: 10.1016/0031-9422(96)00171-9
[9]   陈天舒, 修妍伟, 王琼 , 等. 盐生植物盐地碱蓬酪氨酸酶的酶学特性. 植物生理学报, 2011,47(10):1017-1023.
[9]   Chen T S, Xiu Y W, Wang Q , et al. Enzymatic characteristics of tyrosinase in euhalophyte Suaeda salsa. Plant Physiology Journal, 2011,47(10):1017-1023.
[10]   Jiratanan T, Liu R H . Antioxidant activity of processed table beets (Beta vulgaris var. conditiva) and green beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 2004,52(9):2659-2670.
doi: 10.1021/jf034861d
[11]   Teng X L, Chen N, Xiao X G . Identification of a catalase-phenol oxidase in betalain biosynthesis in red amaranth (Amaranthus cruentus). Frontiers in Plant Science, 2016,6(1):1228-1243.
[12]   Lipscomb J D . Mechanism of extradiol aromatic ring-cleaving dioxygenases. Current Opinion in Structural Biology, 2008,18(6):644-649.
doi: 10.1016/j.sbi.2008.11.001 pmid: 2614828
[13]   Christinet L . Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiology, 2004,134(1):265-274.
doi: 10.1104/pp.103.031914
[14]   Tanaka Y, Sasaki N, Ohmiya A . Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 2008,54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x pmid: 18476875
[15]   Sasaki N, Abe Y, Goda Y , et al. Detection of DOPA 4,5-dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa. Plant and Cell Phisiology, 2009,50(5):1012-1016.
doi: 10.1093/pcp/pcp053
[16]   Gandia-Herrero F, Garcia-Carmona F . Characterization of recombinant Beta vulgaris 4,5-DOPA-extradiol-dioxygenase active in the biosynthesis of betalains. Planta, 2012,236(1):91-100.
doi: 10.1007/s00425-012-1593-2
[17]   Chung H H, Schwinn K E, Ngo H M , et al. Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain-producing species. Frontiers in Plant Science, 2015,6(1):499-514.
[18]   Gandia-Herrero F, Garcia-Carmona F . Escherichia coli protein YgiD produces the structural unit of plant pigments betalains: characterization of a prokaryotic enzyme with DOPA-extradiol-dioxygenase activity. Applied Microbiology and Biotechnology, 2014,98(3):1165-1174.
doi: 10.1007/s00253-013-4961-3
[19]   Li J, Christensen B M . Identification of products and intermediates during L-Dopa oxidation to dopachrome using high pressure liquid chromatography with electrochemical detection. Journal of Liquid Chromatography, 1993,16(5):1117-1133.
doi: 10.1080/10826079308019575
[20]   Riley P A . Tyrosinase kinetics: a semi-quantitative model of the mechanism of oxidation of monohydric and dihydric phenolic substrates. Journal of Theoretical Biology, 2000,203(1):1-12.
doi: 10.1006/jtbi.1999.1061
[21]   Schliemann W, Steiner U, Strack D . Betanidin formation from dihydroxyphenylalanine in a model assay system. Phytochemistry, 1998,49(6):1593-1598.
doi: 10.1016/S0031-9422(98)00276-3 pmid: 11711071
[22]   Hatlestad G J, Sunnadeniya R M, Akhavan N A , et al. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nature Genetics, 2012,44(7):816-820.
doi: 10.1038/ng.2297 pmid: 22660548
[23]   Sunnadeniya R, Bean A, Brown M , et al. Tyrosine hydroxylation in betalain pigment biosynthesis is performed by cytochrome P450 enzymes in beets (Beta vulgaris). PloS One, 2016,11(2):e0149417.
doi: 10.1371/journal.pone.0149417
[24]   Land E J, Riley P A . Spontaneous redox reactions of dopaquinone and the balance between the eumelanic and phaeomelanic pathways. Pigment Cell Research, 2000,13(4):273-277.
doi: 10.1034/j.1600-0749.2000.130409.x
[25]   Kishima Y, Suiko M, Adachi T . Betalain pigmentation in petal of Portulaca is preceded by a dramatic tyrosine accumulation. Journal of Plant Physiology, 1991,137(4):505-506.
doi: 10.1016/S0176-1617(11)80325-1
[26]   Toivonen P M A, Brummell D A . Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 2008,48(1):1-14.
doi: 10.1016/j.postharvbio.2007.09.004
[27]   Gandia-Herrero F, Escribano J, Garcia-Carmona F . Betaxanthins as substrates for tyrosinase. an approach to the role of tyrosinase in the biosynthetic pathway of betalains. Plant Physiology, 2005,138(1):421-432.
doi: 10.1104/pp.104.057992
[28]   Das S S, Gauri S S, Misra B B , et al. Purification and characterization of a betanidin glucosyltransferase from Amaranthus tricolor L catalyzing non-specific biotransformation of flavonoids. Plant Science, 2013,211(3):61-69.
doi: 10.1016/j.plantsci.2013.07.003
[29]   Vogt T . Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5- and 6-O-glucosyltransferase from Dorotheanthus bellidiformis. Planta, 2002,214(3):492-495.
doi: 10.1007/s00425-001-0685-1
[30]   Sasaki N, Adachi T, Koda T , et al. Detection of UDP-glucose:cyclo-DOPA 5-O-glucosyltransferase activity in four o’clocks (Mirabilis jalapa L.). FEBS Letters, 2004,568(1-3):159-162.
doi: 10.1016/j.febslet.2004.04.097
[31]   Sasaki N, Abe Y, Wada K , et al. Amaranthin in feather cockscombs is synthesized via glucuronylation at the cyclo-DOPA glucoside step in the betacyanin biosynthetic pathway. Journal of Plant Research, 2005,118(6):439-442.
doi: 10.1007/s10265-005-0237-z
[32]   Gandia-Herrero F, Escribano J, Garcia-Carmona F . Structural implications on color, fluorescence, and antiradical activity in betalains. Planta, 2010,232(2):449-460.
doi: 10.1007/s00425-010-1191-0 pmid: 20467875
[33]   Schliemann W, Kobayashi N, Strack D . The decisive step in betaxanthin biosynthesis is a spontaneous reaction. Plant Physiology, 1999,119(4):1217-1232.
doi: 10.1104/pp.119.4.1217 pmid: 10198080
[34]   Godoy-Alcantar C, Yatsimirsky A K, Lehn J M . Structure-stability correlations for imine formation in aqueous solution. Journal of Physical Organic Chemistry, 2005,18(10):979-985.
doi: 10.1002/poc.941
[35]   Polturak G, Breitel D, Grossman N , et al. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. The New Phytologist, 2016,210(1):269-283.
doi: 10.1111/nph.13796
[36]   Wang H, Li Y, Zhang K , et al. Feasibility and transcriptomic analysis of betalain production by biomembrane surface fermentation of Penicillium novae-zelandiae. AMB Express, 2018,8(1):4-13.
doi: 10.1186/s13568-017-0529-4
[37]   Harris N N, Javellana J, Davies K M , et al. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biology, 2012,12(1):34-45.
doi: 10.1186/1471-2229-12-34
[38]   Nakatsuka T, Yamada E, Takahashi H , et al. Genetic engineering of yellow betalain pigments beyond the species barrier. Scientific Reports, 2013,3(6):1970-1976.
doi: 10.1038/srep01970 pmid: 23760173
[39]   Polturak G, Grossman N, Vela-Corcia D , et al. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(34):9062-9067.
doi: 10.1073/pnas.1707176114
[40]   Deloache W C, Russ Z N, Narcross L , et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015,11(7):465-471.
doi: 10.1038/nchembio.1816 pmid: 25984720
[41]   Grewal P S, Modavi C, Russ Z N , et al. Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metabolic Engineering, 2018,45(1):180-188.
doi: 10.1016/j.ymben.2017.12.008
[42]   Sekiguchi H, Ozeki Y, Sasaki N . In vitro synthesis of betaxanthins using recombinant DOPA 4,5-dioxygenase and evaluation of their radical-scavenging activities. Journal of Agricultural and Food Chemistry, 2010,58(23):12504-12509.
doi: 10.1021/jf1030086
[43]   Luo Y, Li B Z, Liu D , et al. Engineered biosynthesis of natural products in heterologous hosts. Chemical Society Reviews, 2015,44(15):5265-5290.
doi: 10.1039/C5CS00025D
[44]   Leonard E, Yan Y, Koffas M A . Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metabolic Engineering, 2006,8(2):172-181.
doi: 10.1016/j.ymben.2005.11.001
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[4] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[5] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[6] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[7] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[8] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[9] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[10] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[11] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[12] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[13] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[14] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[15] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.