Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (11): 100-109    DOI: 10.13523/j.cb.2106043
    
Applications of Quorum Sensing Systems in Synthetic Biology
ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan()
School of Life Science, Northeast Forestry University, Harbin 150040, China
Download: HTML   PDF(988KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Quorum sensing (QS) is an intercellular communication system found in many microorganisms. The autoinducers accumulate as the bacteria population grows. It can promote bacteria to acclimate current population density, regulate the formation of biofilm, and modulate the expression of specific genes. In recent years, researchers have been working on the principle of operation as well as the key elements of QS system and now we understand much more about them. These results would help us in designing a promising multi-system work using multiple methods of synthetic biology, and it can help researchers to take control of intercellular communication dynamically, which is particularly important. On the basis that quorum sensing is a cell-cell communication system, the research progress of the joint design of multiple quorum sensing systems in the automatic regulation of bio based chemicals production is reviewed. The application of quorum sensing system to realize two-way biological information exchange in the field of bioelectrochemical transformation is summarized. At the same time, this article summarizes the research progress of the combination of the dynamic regulation function of quorum sensing system and the diagnosis and treatment of various diseases in the medical field, and the expectation of development prospect.



Key wordsQuorum sensing      Intercellular communication      Synthetic biology      Dynamically regulate     
Received: 23 June 2021      Published: 01 December 2021
ZTFLH:  Q819  
Corresponding Authors: Xiao-yan LI     E-mail: xyli821187@163.com
Cite this article:

ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology. China Biotechnology, 2021, 41(11): 100-109.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2106043     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I11/100

Fig.1 Generalized model of quorum sensing Numbers in the flow charts represent different stages of the QS process. QS signal is synthesised by synthase and spread out of the cell. Those signals couldn’t be transported into cell due to diffusion or active transport until the threshold is reached. QS signals would bind transcription regulators in cell inner,the complex of them could bind QS promotor so that the expression of target gene could be regulated
Fig.2 Application of quorum sensing system to control engineering bacteria in biochemical production, bioelectrochemical transformation and medical fields Design engineering bacteria through the mutual combination of orthogonality quorum sensing system, quorum sensing system and a variety of technology combined with the exquisite design sense of self-induced substances, light, heat, metal ions, nucleic acid, antibodies and other signals, express the corresponding characters. (1) In the field of biochemistry production: dynamically regulate population density, inhibit the pathway of substrate conversion to non-target metabolites, so as to maximize substrate utilization; (2) In the field of bioelectrochemistry: induction and enhancement of group sensing system through electrical signals; (3) In the field of biomedicine: through the activation of visual signals for the detection of diseases, the construction of a new drug delivery system based on the characteristics of engineering bacteria
[1]   Yi L, Dong X, Grenier D, et al. Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics. Science of the Total Environment, 2021, 763:143031.
doi: 10.1016/j.scitotenv.2020.143031
[2]   Nealson K H, Platt T, Hastings J W. Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 1970, 104(1):313-322.
doi: 10.1128/jb.104.1.313-322.1970 pmid: 5473898
[3]   Li Z J, Rosenbaum M A, Venkataraman A, et al. Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chemical Communications, 2011, 47(11):3060.
doi: 10.1039/c0cc05037g
[4]   Taylor A F, Tinsley M R, Wang F, et al. Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science, 2009, 323(5914):614-617.
doi: 10.1126/science.1166253
[5]   Kim M K, Zhao A S, Wang A, et al. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nature Microbiology, 2017, 2:17080.
doi: 10.1038/nmicrobiol.2017.80
[6]   Swem L R, Swem D L, O’Loughlin C T, et al. A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Molecular Cell, 2009, 35(2):143-153.
doi: 10.1016/j.molcel.2009.05.029 pmid: 19647512
[7]   Minogue T D, Trebra M W V, Bernhard F, et al. The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Molecular Microbiology, 2002, 44(6):1625-1635.
doi: 10.1046/j.1365-2958.2002.02987.x
[8]   Banerjee G, Ray A K. Quorum-sensing network-associated gene regulation in Gram-positive bacteria. Acta Microbiologica et Immunologica Hungarica, 2017, 64(4):439-453.
doi: 10.1556/030.64.2017.040 pmid: 29243493
[9]   Xavier K B, Bassler B L. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. Journal of Bacteriology, 2005, 187(1):238-248.
doi: 10.1128/JB.187.1.238-248.2005
[10]   Holoidovsky L, Meijler M M. Synthesis and evaluation of indole-based autoinducers on quorum sensing in Vibrio cholerae. ACS Infectious Diseases, 2020, 6(4):572-576.
doi: 10.1021/acsinfecdis.9b00409 pmid: 32182033
[11]   Sperandio V, Torres A G, Jarvis B, et al. Bacteria-host communication: the language of hormones. PNAS, 2003, 100(15):8951-8956.
pmid: 12847292
[12]   Hobom B. Genchirurgie: an der Schwelle zur synthetischen biologie (Gene surgery: on the threshold of synthetic biology). Med Klin, 1980, 75(24):834-841.
pmid: 6160378
[13]   Keller E F. What does synthetic biology have to do with biology? BioSocieties, 2009, 4(2-3):291-302.
doi: 10.1017/S1745855209990123
[14]   Basu S, Mehreja R, Thiberge S, et al. Spatiotemporal control of gene expression with pulse-generating networks. PNAS, 2004, 101(17):6355-6360.
doi: 10.1073/pnas.0307571101
[15]   Stricker J, Cookson S, Bennett M R, et al. A fast, robust and tunable synthetic gene oscillator. Nature, 2008, 456(7221):516-519.
doi: 10.1038/nature07389
[16]   Hu Y D, Yang Y, Katz E, et al. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells. Chemical Communications (Cambridge, England), 2015, 51(20):4184-4187.
doi: 10.1039/C5CC00026B
[17]   Andrianantoandro E, Basu S, Karig D K, et al. Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2006, 2: 2006.0028.
[18]   Chowdhury S, Castro S, Coker C, et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nature Medicine, 2019, 25(7):1057-1063.
doi: 10.1038/s41591-019-0498-z pmid: 31270504
[19]   Saeidi N, Wong C K, Lo T M, et al. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Molecular Systems Biology, 2011, 7:521.
doi: 10.1038/msb.2011.55
[20]   Miller E L, Kjos M, Abrudan M I, et al. Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae. The ISME Journal, 2018, 12(10):2363-2375.
doi: 10.1038/s41396-018-0178-x
[21]   Li L, Wei K K, Liu X C, et al. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metabolic Engineering, 2019, 52:153-167.
doi: 10.1016/j.ymben.2018.12.001
[22]   Sung L Y, Wu M Y, Lin M W, et al. Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli. Biotechnology and Bioengineering, 2019, 116(5):1066-1079.
doi: 10.1002/bit.26915 pmid: 30636321
[23]   Du P, Zhao H W, Zhang H Q, et al. De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation. Nature Communications, 2020, 11:4226.
doi: 10.1038/s41467-020-17993-w
[24]   Halleran A D, Murray R M. Cell-free and in vivo characterization of lux, Las, and rpa quorum activation systems in E. coli. ACS Synthetic Biology, 2018, 7(2):752-755.
doi: 10.1021/acssynbio.7b00376 pmid: 29120612
[25]   Kylilis N, Tuza Z A, Stan G B, et al. Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nature Communications, 2018, 9:2677.
doi: 10.1038/s41467-018-05046-2
[26]   Zeng W Q, Du P, Lou Q L, et al. Rational design of an ultrasensitive quorum-sensing switch. ACS Synthetic Biology, 2017, 6(8):1445-1452.
doi: 10.1021/acssynbio.6b00367
[27]   Chubukov V, Gerosa L, Kochanowski K, et al. Coordination of microbial metabolism. Nature Reviews Microbiology, 2014, 12(5):327-340.
doi: 10.1038/nrmicro3238 pmid: 24658329
[28]   Terrell J L, Wu H C, Tsao C Y, et al. Nano-guided cell networks as conveyors of molecular communication. Nature Communications, 2015, 6:8500.
doi: 10.1038/ncomms9500
[29]   Osmekhina E, Jonkergouw C, Schmidt G, et al. Controlled communication between physically separated bacterial populations in a microfluidic device. Communications Biology, 2018, 1:97.
doi: 10.1038/s42003-018-0102-y
[30]   Ha J H, Hauk P, Cho K, et al. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. Science Advances, 2018, 4(6): eaar7063.
[31]   Stephens K, Pozo M, Tsao C Y, et al. Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition. Nature Communications, 2019, 10:4129.
doi: 10.1038/s41467-019-12027-6
[32]   Gilbert L A, Horlbeck M A, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014, 159(3):647-661.
doi: 10.1016/j.cell.2014.09.029 pmid: 25307932
[33]   Liu Y L, Chen J J, Crisante D, et al. Dynamic cell programming with quorum sensing-controlled CRISPRi circuit. ACS Synthetic Biology, 2020, 9(6):1284-1291.
doi: 10.1021/acssynbio.0c00148
[34]   Alnahhas R N, Sadeghpour M, Chen Y, et al. Majority sensing in synthetic microbial consortia. Nature Communications, 2020, 11(1):1-10.
doi: 10.1038/s41467-019-13993-7
[35]   Jiang W, He X Y, Luo Y, et al. Two completely orthogonal quorum sensing systems with self-produced autoinducers enable automatic delayed cascade control. ACS Synthetic Biology, 2020, 9(9):2588-2599.
doi: 10.1021/acssynbio.0c00370 pmid: 32786361
[36]   Niederholtmeyer H, Chaggan C, Devaraj N K. Communication and quorum sensing in non-living mimics of eukaryotic cells. Nature Communications, 2018, 9:5027.
doi: 10.1038/s41467-018-07473-7 pmid: 30487584
[37]   Wu J J, Bao M J, Duan X G, et al. Developing a pathway-independent and full-autonomous global resource allocation strategy to dynamically switching phenotypic states. Nature Communications, 2020, 11:5521.
doi: 10.1038/s41467-020-19432-2
[38]   Bao S H, Li W Y, Liu C J, et al. Quorum-sensing based small RNA regulation for dynamic and tuneable gene expression. Biotechnology Letters, 2019, 41(10):1147-1154.
doi: 10.1007/s10529-019-02719-w
[39]   Gupta A, Reizman I M B, Reisch C R, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nature Biotechnology, 2017, 35(3):273-279.
doi: 10.1038/nbt.3796
[40]   Doong S J, Gupta A, Prather K L J. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. PNAS, 2018, 115(12):2964-2969.
doi: 10.1073/pnas.1716920115
[41]   Liu Y, Li J Y, Tschirhart T, et al. Connecting biology to electronics: molecular communication via redox modality. Advanced Healthcare Materials, 2017, 6(24):1700789.
doi: 10.1002/adhm.v6.24
[42]   Kaberniuk A A, Shemetov A A, Verkhusha V V. A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nature Methods, 2016, 13(7):591-597.
doi: 10.1038/nmeth.3864 pmid: 27159085
[43]   Pudasaini A, El-Arab K K, Zoltowski B D. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Frontiers in Molecular Biosciences, 2015, 2:18.
doi: 10.3389/fmolb.2015.00018 pmid: 25988185
[44]   Dixon T A, Williams T C, Pretorius I S. Sensing the future of bio-informational engineering. Nature Communications, 2021, 12(1):388.
doi: 10.1038/s41467-020-20764-2
[45]   Gu M Z, Imlay J A. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Molecular Microbiology, 2011, 79(5):1136-1150.
doi: 10.1111/mmi.2011.79.issue-5
[46]   Tschirhart T, Kim E, McKay R, et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nature Communications, 2017, 8:14030.
doi: 10.1038/ncomms14030 pmid: 28094788
[47]   Bhokisham N, VanArsdale E, Stephens K T, et al. A redox-based electrogenetic CRISPR system to connect with and control biological information networks. Nature Communications, 2020, 11:2427.
doi: 10.1038/s41467-020-16249-x
[48]   VanArsdale E, Hörnström D, Sjöberg G, et al. A coculture based tyrosine-tyrosinase electrochemical gene circuit for connecting cellular communication with electronic networks. ACS Synthetic Biology, 2020, 9(5):1117-1128.
doi: 10.1021/acssynbio.9b00469 pmid: 32208720
[49]   Stephens K, Zakaria F R, VanArsdale E, et al. Electronic signals are electrogenetically relayed to control cell growth and co-culture composition. Metabolic Engineering Communications, 2021, 13:e00176.
doi: 10.1016/j.mec.2021.e00176
[50]   Terrell J L, Tschirhart T, Jahnke J P, et al. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. Nature Nanotechnology, 2021, 16(6):688-697.
doi: 10.1038/s41565-021-00878-4
[51]   Miller C, Gilmore J. Detection of quorum-sensing molecules for pathogenic molecules using cell-based and cell-free biosensors. Antibiotics, 2020, 9(5):259.
doi: 10.3390/antibiotics9050259
[52]   Cao H L, Xia T Y, Li Y R, et al. Uncoupled quorum sensing modulates the interplay of virulence and resistance in a multidrug-resistant clinical Pseudomonas aeruginosa isolate belonging to the MLST550 clonal complex. Antimicrobial Agents and Chemotherapy, 2019, 63(4):e01944-e01918.
[53]   Wen K Y, Cameron L, Chappell J, et al. A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples. ACS Synthetic Biology, 2017, 6(12):2293-2301.
doi: 10.1021/acssynbio.7b00219
[54]   Mimee M, Nadeau P, Hayward A, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science, 2018, 360(6391):915-918.
doi: 10.1126/science.aas9315 pmid: 29798884
[55]   Lohse M B, Gulati M, Johnson A D, et al. Development and regulation of single- and multi-species Candida albicans biofilms. Nature Reviews Microbiology, 2018, 16(1):19-31.
doi: 10.1038/nrmicro.2017.107
[56]   Yin S L, Chang Y J, Deng S P, et al. Screening and identification of marine fungi against bacterial quorum sensing. Chin J Biotech, 2011, 27(9):1337-1346.
[57]   Bachtiar E W, Bachtiar B M, Jarosz L M, et al. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation. Frontiers in Cellular and Infection Microbiology, 2014, 4:94.
doi: 10.3389/fcimb.2014.00094 pmid: 25101248
[58]   Zhang B Z, Ku X G, Zhang X Q, et al. The AI-2/luxS quorum sensing system affects the growth characteristics, biofilm formation, and virulence of Haemophilus parasuis. Frontiers in Cellular and Infection Microbiology, 2019, 9:62.
doi: 10.3389/fcimb.2019.00062
[59]   Fan X, Peng P C, Huang H, et al. Undesirable effects of exogenous N-acyl homoserine lactones on moving bed biofilm reactor treating medium-strength synthetic wastewater. Science of the Total Environment, 2019, 696:134061.
doi: 10.1016/j.scitotenv.2019.134061
[60]   Bandara H M H N, Hewavitharana A K, Shaw P N, et al. A novel, quorum sensor-infused liposomal drug delivery system suppresses Candida albicans biofilms. International Journal of Pharmaceutics, 2020, 578:119096.
doi: S0378-5173(20)30080-6 pmid: 32006626
[61]   Sedlmayer F, Hell D, Müller M, et al. Designer cells programming quorum-sensing interference with microbes. Nature Communications, 2018, 9(1):1822.
doi: 10.1038/s41467-018-04223-7
[62]   Tham E H, Koh E, Common J E A, et al. Biotherapeutic approaches in atopic dermatitis. Biotechnology Journal, 2020, 15(10):e1900322.
[63]   Piewngam P, Zheng Y, Nguyen T H, et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature, 2018, 562(7728):532-537.
doi: 10.1038/s41586-018-0616-y
[64]   Danino T, Prindle A, Kwong G A, et al. Programmable probiotics for detection of cancer in urine. Science Translational Medicine, 2015, 7(289): 289ra84.
[65]   Din M O, Danino T, Prindle A, et al. Synchronized cycles of bacterial Lysis for in vivo delivery. Nature, 2016, 536(7614):81-85.
doi: 10.1038/nature18930
[66]   Hauk P, Stephens K, Virgile C, et al. Homologous quorum sensing regulatory circuit: a dual-input genetic controller for modulating quorum sensing-mediated protein expression in E. coli. ACS Synth Biol, 2020, 9(10):2692-2702.
doi: 10.1021/acssynbio.0c00179
[67]   Zhong D, Xu X H, Li Y K, et al. Entirely synthetic bacterial nanomimics for highly-effective tumor suppression and immune elicitation. Nano Today, 2020, 35:100950.
doi: 10.1016/j.nantod.2020.100950
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[4] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[5] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[6] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[7] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[8] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[9] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[10] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[11] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[12] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[13] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[14] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[15] Hua-ling XIE,Dong-qiao LI,Pei-juan CHI,Yan-ping YANG. An Analysis on the Competition of Patents in Synthetic Biology[J]. China Biotechnology, 2019, 39(4): 114-123.