Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (9): 52-61    DOI: 10.13523/j.cb.2003027
    
Advances in Synthetic Biology of Fungal Aromatic Polyketides
RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le()
Key Laboratory of Systems Bioengineering,Ministry of Education, School of Chemical Engineering,Tianjin University, Tianjin 301700,China
Download: HTML   PDF(1577KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Fungal aromatic polyketides are a class of natural products with a wide range of bio-activite,which catalyzed by fungal non-reducing polyketide synthase (NR-PKSs).Some aromatic polyketide producting strains have problems such as difficulty in cultivation, pathogenicity, or low yield, which fundamentally limit the development and application of fungal aromatic polyketides.With the development of synthetic biology and metabolic engineering, more and more polyketides with biological activity have realized the heterogeneous production of industrial microorganisms(such as Saccharomyces cerevisiae and Aspergillus nidulans,etc.), and related research have gradually become hot spots. The research progress of the synthetic biology of fungal aromatic polyketides in recent years is reviewed from the analysis and mining of biosynthetic pathways, the construction and optimization of chassis cells, etc., which lays the foundation for the efficient synthesis of artificial metabolic pathways of aromatic polyketides and industrial production in the future.



Key wordsFungal aromatic polyketides      NR-PKSs      Biosynthetic pathways      Synthetic biology      Heterologous expression     
Received: 09 March 2020      Published: 12 October 2020
ZTFLH:  Q819  
Corresponding Authors: YIN Qing-ge-le CAI     E-mail: qinggele@tju.edu.cn
Cite this article:

RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides. China Biotechnology, 2020, 40(9): 52-61.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2003027     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I9/52

Tab 1 Advances in biosynthetic of fungal aromatic polyketides
[1]   Bovio E, Garzoli L, Poli A, et al. Marine fungi from the sponge Grantia compressa: biodiversity, chemodiversity, and biotechnological potential. Marine Drugs, 2019,17(4):220-242.
[2]   O'Hagan D. The polyketide metabolites. Comparative Biochemistry and Physiology Part A: Physiology, 1992,103(3):613-617.
[3]   Cox R J& Simpson T J. Fungal type I polyketide synthases. Methods Enzymol, 2009,459:49-78.
pmid: 19362635
[4]   Cox R J. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their genes. Org Biomol Chem, 2007,5(13):2010-2026.
doi: 10.1039/b704420h pmid: 17581644
[5]   Crawford J M, Thomas P M, Scheerer J R, et al. Deconstruction of iterative multidomain polyketide synthase function. Science, 2008,320(5873):243-246.
pmid: 18403714
[6]   Watanabe A, Fujii I, Sankawa U, et al. Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. Tetrahedron Letters, 1999,40(1):91-94.
[7]   Rude M A, Khosla C. Engineered biosynthesis of polyketides in heterologous hosts. Chemical Engineering Science, 2004,59(22-23):4693-4701.
[8]   Kealey J T, Liu L, Santi D V, et al. Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proceedings of the National Academy of Sciences, 1998,95(2):505-509.
[9]   Wattanachaisaereekul S, Lantz A E, Nielsen M L, et al. Optimization of heterologous production of the polyketide 6-MSA in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2007,97(4):893-900.
[10]   Korman T P, Crawford J M, Labonte J W, et al. Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis. Proc Natl Acad Sci USA, 2010,107(14):6246-6251.
doi: 10.1073/pnas.0913531107 pmid: 20332208
[11]   Crawford J M, Vagstad A L, Whitworth K P, et al. Synthetic strategy of nonreducing iterative polyketide synthases and the origin of the classical "starter- unit effect". Chembiochem, 2008,9(7):1019-1023.
[12]   Girol C G, Fisch K M, Heinekamp T, et al. Regio-and stereoselective oxidative phenol coupling in Aspergillus niger. Angewandte Chemie International Edition, 2012,51(39):9788-9791.
pmid: 22945023
[13]   Fujii I, Watanabe A, Sankawa U, et al. Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chemistry & Biology, 2001,8(2):189-197.
[14]   Studt L, Wiemann P, Kleigrewe K, et al. Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Applied and Environmental Microbiology, 2012,78(12):4468-4480.
pmid: 22492438
[15]   Awakawa T, Kaji T, Wakimoto T, et al. A heptaketide naphthaldehyde produced by a polyketide synthase from Nectria haematococca. Bioorganic & Medicinal Chemistry Letters, 2012,22(13):4338-4340.
pmid: 22633689
[16]   Chiang Y M, Szewczyk E, Davidson A D, et al. Characterization of the Aspergillus nidulans monodictyphenone gene cluster. Appl Environ Microbiol, 2010,76(7):2067-2074.
pmid: 20139316
[17]   Li Y, Xu W& Tang Y. Classification, prediction, and verification of the regioselectivity of fungal polyketide synthase product template domains. Journal of Biological Chemistry, 2010,285(30):22764-22773.
[18]   Chooi Y H, Cacho R, Tang Y. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chemistry & Biology, 2010,17(5):483-494.
pmid: 20534346
[19]   Li Y, Chooi Y H, Sheng Y, et al. Comparative characterization of fungal anthracenone and naphthacenedione biosynthetic pathways reveals an α-hydroxylation-hependent Claisen-like cyclization catalyzed by a dimanganese thioesterase. Journal of the American Chemical Society, 2011,133(39):15773-15785.
pmid: 21866960
[20]   Szewczyk E, Chiang Y M, Oakley C E, et al. Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans. Applied and Environmental Microbiology, 2008,74(24):7607-7612.
pmid: 18978088
[21]   Nielsen M T, Nielsen J B, Anyaogu D C, et al. Heterologous reconstitution of the intact geodin gene cluster in Aspergillus nidulans through a simple and versatile PCR based approach. PLoS ONE, 2013,8(8):e72871-e72880.
pmid: 24009710
[22]   Xu X Y, Liu L, Zhang F, et al. Identification of the first diphenyl ether gene cluster for pestheic acid biosynthesis in plant endophyte Pestalotiopsis fici. Chem Bio Chem, 2013,15(2):284-292.
pmid: 24302702
[23]   Throckmorton K, Lim F Y, Kontoyiannis D P, et al. Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus. Environmental Microbiology, 2016,18(1):246-259.
[24]   Cacho R A, Chooi Y H, Zhou H, et al. Complexity generation in fungal polyketide biosynthesis: a spirocycle-forming P450 in the concise pathway to the antifungal drug griseofulvin. ACS Chemical Biology, 2013,8(10):2322-2330.
pmid: 23978092
[25]   Bok J W, Keller N P. 2 Insight into fungal secondary metabolism from ten years of LaeA research// Biochemistry and Molecular Biology. New York: Springer International Publishing, 2016: 21-29.
[26]   Bouhired S, Weber M, Kempf-Sontag A, et al. Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptio- nal regulator LaeA. Fungal Genetics and Biology, 2007,44(11):1134-1145.
doi: 10.1016/j.fgb.2006.12.010 pmid: 17291795
[27]   Sakai K, Kinoshita H, Shimizu T, et al. Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. Journal of Bioscience & Bioengineering, 2008,106(5):466-472.
doi: 10.1263/jbb.106.466 pmid: 19111642
[28]   Yeh H H, Ahuja M, Chiang Y M, et al. Resistance gene-guided genome mining: serial promoter exchanges in Aspergillus nidulans reveal the biosynthetic pathway for fellutamide B, a proteasome inhibitor. ACS Chemical Biology, 2016,11(8):2275-2284.
pmid: 27294372
[29]   Valiante V, Macheleidt J, F? ge M, et al. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Frontiers in Microbiology, 2015,6:325-336.
[30]   Strauss J, Reyes-Dominguez Y. Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genetics and Biology, 2011,48(1):62-69.
pmid: 20659575
[31]   Elena C, Ravasi P, Castelli M E, et al. Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Frontiers in Microbiology, 2014,5:21-29.
doi: 10.3389/fmicb.2014.00021 pmid: 24550894
[32]   Williams R B, Henrikson J C, Hoover A R, et al. Epigenetic remodeling of the fungal secondary metabolome. Organic & Biomolecular Chemistry, 2008,6(11):1895-1897.
doi: 10.1039/b804701d pmid: 18480899
[33]   Bond C, Tang Y, Li L. Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases. Fungal Genetics and Biology, 2016,89:52-61.
doi: 10.1016/j.fgb.2016.01.005 pmid: 26850128
[34]   Kindinger F, Nies J, Becker A, et al. Genomic locus of a Penicillium crustosum pigment as integration site for secondary metabolite gene expression. ACS Chemical Biology, 2019,14(6):1227-1234.
pmid: 31141338
[35]   Ma S M, Zhan J, Watanabe K, et al. Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberella fujikuroi. Journal of the American Chemical Society, 2007,129(35):10642-10643.
pmid: 17696354
[36]   Wiemann P, Willmann A, Straeten M, et al. Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Molecular Microbiology, 2009,72(4):931-946.
[37]   Arndt B, Studt L, Wiemann P, et al. Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genetics and Biology, 2015,84:26-36.
pmid: 26382642
[38]   Bradshaw R E, Jin H, Morgan B S, et al. A polyketide synthase gene required for biosynthesis of the aflatoxin-like toxin, dothistromin. Mycopathologia, 2006,161(5):283-294.
doi: 10.1007/s11046-006-0240-5 pmid: 16649078
[39]   Awakawa T, Yokota K, Funa N, et al. Physically discrete β-lactamase-type thioesterase catalyzes product release in atrochrysone synthesis by iterative type I polyketide synthase. Chemistry & Biology, 2009,16(6):613-623.
[40]   Sanchez J F, Entwistle R, Hung J H, et al. Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. Journal of the American Chemical Society, 2011,133(11):4010-4017.
doi: 10.1021/ja1096682 pmid: 21351751
[41]   Chooi Y H, Fang J, Liu H, et al. Genome mining of a prenylated and immunosuppressive polyketide from pathogenic fungi. Organic Letters, 2013,15(4):780-783.
doi: 10.1021/ol303435y pmid: 23368997
[42]   Mattern D J, Schoeler H, Weber J, et al. Identification of the antiphagocytic trypacidin gene cluster in the human-pathogenic fungus Aspergillus fumigatus. Applied Microbiology and Biotechnology, 2015,99(23):10151-10161.
[43]   Lim F Y, Hou Y, Chen Y, et al. Genome-based cluster deletion reveals an endocrocin biosynthetic pathway in Aspergillus fumigatus. Applied & Environmental Microbiology, 2012,78(12):4117-4125.
pmid: 22492455
[44]   Griffiths S, Mesarich C H, Saccomanno B, et al. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization. Proceedings of the National Academy of Sciences, 2016,113(25):6851-6856.
[45]   Neubauer L, Dopstadt J, Humpf H U, et al. Identification and characterization of the ergochrome gene cluster in the plant pathogenic fungus Claviceps purpurea. Fungal Biology and Biotechnology, 2016,3(1):2-15.
[46]   Palonen E K, Raina S, Brandt A, et al. Melanisation of Aspergillus terreus:is butyrolactone I involved in the regulation of both DOPA and DHN types of pigments in submerged culture. Microorganisms, 2017,5(2):6878-6881.
[47]   Franco M E, Lopez S, Medina R, et al. Draft genome sequence and gene annotation of Stemphylium lycopersici strain CIDEFI-216. Genome Announce- ments, 2015,3(5):e01069-15.
[48]   Szwalbe A J, Williams K, Song Z, et al. Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi. Chemical Science, 2019,10(1):233-238.
pmid: 30746079
[49]   Greco C, De Mattos-Shipley K, Bailey A M, et al. Structure revision of cryptosporioptides and determination of the genetic basis for dimeric xanthone biosynthesis in fungi. Chemical Science, 2019,10(10):2930-2939.
pmid: 30996871
[50]   Weber C, Farwick A, Benisch F, et al. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Applied Microbiology and Biotechnology, 2010,87(4):1303-1315.
doi: 10.1007/s00253-010-2707-z pmid: 20535464
[51]   Jones E W. Tackling the protease problem in Saccharomyces cerevisiae. Methods in Enzymology, 1991,194(194):428.
[52]   Kealey J T. Creating polyketide diversity through genetic engineering. Frontiers in Bioscience, 2003,8(3):c1-13.
[53]   He Y, Wang B, Chen W, et al. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnology Advances, 2018,36(3):739-783.
doi: 10.1016/j.biotechadv.2018.02.001 pmid: 29421302
[54]   Chiang Y M, Oakley C E, Ahuia M, et al. An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. Journal of the American Chemical Society, 2013,135(20):7720-7731.
doi: 10.1021/ja401945a pmid: 23621425
[55]   Watanabe A. Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae. FEMS Microbiology Letters, 2000,192(1):39-44.
doi: 10.1111/j.1574-6968.2000.tb09356.x pmid: 11040426
[56]   Yin W B, Chooi Y H, Smith A R, et al. Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans. ACS Synth Biol, 2013,2(11):629-634.
doi: 10.1021/sb400048b pmid: 23758576
[57]   Lee K K M, Silva N A D, Kealey J T. Determination of the extent of phosphopantetheinylation of polyketide synthases expressed in Escherichia coli and Saccharomyces cerevisiae. Analytical Biochemistry, 2009,394(1):75-80.
[58]   Ehmann D E, Gehring A M, Walsh C T. Lysine biosynthesis in Saccharomyces cerevisiae: mechanism of alpha-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5. Biochemistry, 1999,38(19):6171-6177.
doi: 10.1021/bi9829940 pmid: 10320345
[59]   Palmer J M, Keller N P. Secondary metabolism in fungi: does chromosomal location matter. Current Opinion in Microbiology, 2010,13(4):431-436.
pmid: 20627806
[60]   Ching C G. Sequential cloned gene integration: enhancements in Saccharomyces cerevisiae, extension to polypoid yeast strains, and appli -cation to polyketide production. California: University of California Irvine, 2005.
[61]   Leber C, Da Silva N A. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnology & Bioengineering, 2014,111(2):347-358.
doi: 10.1002/bit.25021 pmid: 23928901
[62]   Choi J W, Da Silva N A. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase. Journal of Biotechnology, 2014,187:56-59.
doi: 10.1016/j.jbiotec.2014.07.430 pmid: 25078432
[63]   Wattanachaisaereekul S, Lantz A E, Nielsen M L, et al. Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. Metabolic Engineering, 2008,10(5):246-254.
pmid: 18555717
[64]   Shi S, Chen Y, Siewers V, et al. Improving production of malonyl coenzyme A- derived metabolites by abolishing Snf1-dependent regulation of Acc1. mBio, 2014,5(3):e01130-14.
doi: 10.1128/mBio.01130-14 pmid: 24803522
[65]   Shiba Y, Paradise E M, Kirby J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level prod- uction of isoprenoids. Metabolic Engineering, 2007,9(2):160-168.
doi: 10.1016/j.ymben.2006.10.005 pmid: 17196416
[66]   Chen Y, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 2013,15:48-54.
pmid: 23164578
[67]   Lian J, Si T, Nari N U, et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metabolic Engineering, 2014,24:139-149.
doi: 10.1016/j.ymben.2014.05.010 pmid: 24853351
[68]   Cardenas J, Da Silva, N A. Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone. Metabolic Engineering, 2014,25:194-203.
doi: 10.1016/j.ymben.2014.07.008 pmid: 25084369
[69]   Chen Y, Bao J, Kim I K, et al. Coupled incremental precursor and co- factor supply improves 3-hydroxypropionic acid production in Saccharomyce cerevisiae. Metabolic Engineering, 2014,22:104-109.
doi: 10.1016/j.ymben.2014.01.005 pmid: 24502850
[70]   Beck J, Ripka S, Siegner A, et al. The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum: its gene structure relative to that of other polyketide synthases. FEBS Journal, 1990,192(2):487-498.
[71]   Fujii T, Yamaoka H, Gomi K, et al. Cloning and nucleotide sequence of the ribonuclease T1 gene (rntA) from Aspergillus oryzae and its expression in Saccharomyces cerevisiae and Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry, 1995,59(10):1869-1874.
[72]   Fujii I, Ono Y, Tada H, et al. Cloning of the polyketide synthase gene atX from Aspergillus terreus and its identification as the 6-methylsalicylic acid synthase gene by heterologous expression. Mol Gen Genet, 1996,253(1):1-10.
[73]   Hitschler J, Boles E. De novo production of aromatic m-cresol in Saccharomyces cerevisiae mediated by heterologous polyketide synthases combined with a 6-methylsalicylic acid decarboxylase. Metabolic Engineering Communicatio-ns, 2019,9:e00093.
[74]   Rugbjerg P, Naesby M, Mortensen U H, et al. Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae. Microbial Cell Factories, 2013,12(1):31-39.
[75]   Sun L, Liu G, Li Y, et al. Metabolic engineering of Saccharomyces cerevisiae for efficient production of endocrocin and emodin. Metabolic Engineering, 2019,54:212-221.
pmid: 31028901
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[4] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[5] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[6] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[7] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[8] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[9] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[10] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[11] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[12] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[13] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[14] Hua-ling XIE,Dong-qiao LI,Pei-juan CHI,Yan-ping YANG. An Analysis on the Competition of Patents in Synthetic Biology[J]. China Biotechnology, 2019, 39(4): 114-123.
[15] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.