Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (1): 42-51    DOI: 10.13523/j.cb.2009017
    
Research Progress on In Vivo Continuous Directed Evolution
CHA Ya-ping1,ZHU Mu-zi2,LI Shuang1,**()
1 School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
2 State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
Download: HTML   PDF(13868KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Directed evolution provides a simple and high-efficiency tool for the development of synthetic biology, especially in the chemical synthesis and medicine. However, the traditional directed evolution technique has the problems of cumbersome operation, time-consuming and low-efficiency, which cannot satisfy the construction and screening of mass mutant libraries. In recent years, a technique about in vivo continuous directed evolution that seamlessly integrates mutation, translation (if the evolving molecules are not genes themselves), screening and replication processes into an uninterrupted cycle has emerged, which makes breakthrough in phage, bacteria and eukaryotic cells, greatly facilitating technological innovation of directed evolution. Simultaneously, with the development of in vivo continuous evolution technology, screening methods and evolutionary devices are also constantly improved. Here, this review is done to expound the latest research progress on continuous directed evolution techniques, screening methods and devices, and discuss the current challenges and opportunities.



Key wordsIn vivo continuous directed evolution      Synthetic biology      High-throughput screening      Evolutionary device     
Received: 14 September 2020      Published: 09 February 2021
ZTFLH:  Q819  
Corresponding Authors: Shuang LI     E-mail: shuangli@scut.edu.cn
Cite this article:

CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution. China Biotechnology, 2021, 41(1): 42-51.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2009017     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I1/42

Fig.1 Phage-assisted continuous directed evolution-PACE
Fig.2 Continuous directed evolution in bacteria-EvolvR
Fig.3 In vivo continuous directed evolution in eukaryotic cell (a) The schematic diagrams for OrthoRep (b) The schematic diagrams for ICE
定向进化 技术 突变位置 连续 诱变因素 突变速率/bp/代 优点 缺点 参考文献
噬菌体 PACE 靶基因
正交
连续 M13聚合酶 2.3×10-3 进化速度快应用范围广 仅限于E. coli的细胞质 [14-24]
细菌 MAGE/GREACE 靶基因非
正交
不连续 化学合成/dnaQ聚合酶 1.35×10-7
3×10-8
自动整合至基因组 需人工设计突变文库,不连续 [25-26]
MMR/TM-MAGE/
pOPRTMAGE
基因组 连续 敲除甲基修复基因mutS/mutL 1×10-8 可对细胞基因组进行突变和进化 无法针对特定基因进化 [27-29]
核糖体开关/双功能开关 基因组 连续 dnaQ聚合酶 - 对细胞基因组进行精准调控 无法针对特定基因进化 [30]
EvolvR 靶基因不
完全正交
不连续 易错聚合酶 2.4×10-6 对特定基因
进化
可编辑基因长度受限(≤350 bp) [32]
真核细胞 CRISPR-X 靶基因
非正交
不连续 胞苷脱氨酶 1×10-3 特定类型碱基的突变 只能实现C到T的突变 [35]
ICE 靶基因正交 连续 易错逆转录酶 1.5×10-4 可体内连续
进化
干扰细胞生长 [39]
OrthoRep 靶基因正交 连续 易错DNA聚合酶 1×10-5 可体内连续
进化
系统设计复杂,细胞负担较大 [38]
Table 1 The comparison of in vivo continuous directional evolution techniques
[1]   Mills D R, Peterson R L, Spiegelman S. An extracellular darwinian experiment with a self-duplicating nucleic acid molecule. Proceedings of the National Academy of Sciences, 1967,58(1):217-224.
[2]   Chen K, Arnold F H. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proceedings of the National Academy of Sciences, 1993,90(12):5618-5622.
[3]   Stemmer W P. Rapid evolution of a protein in vitro by DNA shuffling. Nature, 1994,370(6488):389-391.
doi: 10.1038/370389a0 pmid: 8047147
[4]   Lutz S. Beyond directed evolution-semi-rational protein engineering and design. Current Opinion in Chemical Biology, 2010,21(6):734-743.
[5]   Avoigt C, Kauffman S, Wang Z G. Rational evolutionary design: the theory of in vitro protein evolution. Evolutionary Protein Design, 2001,55:79-160.
[6]   Arnold F H, Georgiou G. Directed enzyme evolution: screening and selection methods. Totowa: Humana Press, 2003: 1-2.
[7]   Lang G I, Murray A W. Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics, 2008,178(1):67-82.
pmid: 18202359
[8]   Camps M, Naukkarinen J, Johnson B P, et al. Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proceedings of the National Academy of Sciences, 2003,100(17):9727-9732.
[9]   Larrea A A, Lujan S A, Kunkel T A. SnapShot: DNA mismatch repair. Cell, 2010,141(4):730-731e1.
pmid: 20478261
[10]   Morrison M S, Podracky C J, Liu D R. The developing toolkit of continuous directed evolution. Nature Chemical Biology, 2020,16(6):610-619.
[11]   Badran A H, Liu D R. In vivo continuous directed evolution. Current Opinion in Chemical Biology, 2015,24:1-10.
pmid: 25461718
[12]   D’Oelsnitz S, Ellington A. Continuous directed evolution for strain and protein engineering. Current Opinion in Chemical Biology, 2018,53:158-163.
[13]   Husimi Y. Selection and evolution of bacteriophages in cellstat. Advances in Biophysics, 1989,25:1-43.
doi: 10.1016/0065-227x(89)90003-8 pmid: 2696338
[14]   Esvelt K M, Carlson J C, Liu D R. A system for the continuous directed evolution of biomolecules. Nature, 2011,472(7344):499-503.
[15]   Carlson J C, Badran A H, Guggiana-Nilo D A, et al. Negative selection and stringency modulation in phage-assisted continuous evolution. Nature Chemical Biology, 2014,10(3):216-222.
doi: 10.1038/NCHEMBIO.1453
[16]   Dickinson B C, Packer M S, Badran A H, et al. A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nature Communications, 2014,5:5352.
[17]   Packer M S, Rees H A, Liu D R. Phage-assisted continuous evolution of proteases with altered substrate specificity. Nature Communications, 2017,8(1):956.
[18]   Badran A H, Guzov V M, Huai Q, et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature, 2016,533(7601):58-63.
pmid: 27120167
[19]   Wang T, Badran A H, Huang T P, et al. Continuous directed evolution of proteins with improved soluble expression. Nature Chemical Biology, 2018,14(10):972-980.
pmid: 30127387
[20]   Bryson D, Fan C, Guo L T, et al. Continuous directed evolution of aminoacyl-tRNA synthetases. Nature Chemical Biology, 2017,13(2):1253-1260.
[21]   Hubbard B P, Badran A H, Zuris J A, et al. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nature Methods, 2015,12(10):939-942.
pmid: 26258293
[22]   Hu J H, Miller S M, Geurts M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018,556(7699):57-63.
[23]   Miller S M, Wang T, Randolph P B, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nature Biotechnology, 2020,38(4):471-481.
pmid: 32042170
[24]   Thuronyi B W, Koblan L W, Levy J M, et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nature Biotechnology, 2019,37(9):1070-1079.
[25]   Wang H H, Isaacs F J, Carr P A, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009,460(7257):894-898.
pmid: 19633652
[26]   Luan G, Cai Z, Li Y, et al. Genome replication engineering assisted continuous evolution (GREACE) to improve microbial tolerance for biofuels production. Biotechnology for Biofuels, 2013,6(1):137.
[27]   Luan G D, Cai Z, Luan G, et al. Developing controllable hypermutable clostridium cells through manipulating its methyl-directed mismatch repair system. Protein Cell, 2013,4(11):854-862.
[28]   Lennen R M, Nilsson Wallin A I, Pedersen M, et al. Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects. Nucleic Acids Research, 2016,44(4):e36.
[29]   Nyerges A, Csorgo B, Nagy I, et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proceedings of the National Academy of Sciences, 2016,113(9):2502-2507.
[30]   Pham H L, Wong A, Chua N, et al. Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nature Communications, 2017,8(1):411.
[31]   Zhu L J, Li Y, Cai Z. Development of a stress-induced mutagenesis module for autonomous adaptive evolution of Escherichia coli to improve its stress tolerance. Biotechnology for Biofuels, 2015,8:93.
pmid: 26136829
[32]   Halperin S O, Tou C J, Wong E B, et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature, 2018,560(7717):248-252.
[33]   Si T, Chao R, Min Y H, et al. Automated multiplex genome-scale engineering in yeast. Nature Communications, 2017,8:15187.
doi: 10.1038/ncomms15187 pmid: 28469255
[34]   Garst A D, Bassalo M C, Pines G, et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nature Biotechnology, 2017,35(1):48-55.
[35]   Hess G T, Fresard L, Han K, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nature Methods, 2016,13(12):1036-1042.
[36]   Ravikumar A, Arrieta A, Liu C C. An orthogonal DNA replication system in yeast. Nature Chemical Biology, 2014,10(3):175-177.
[37]   Arzumanyan G, Gabriel K N, Ravikumar A, et al. Mutually orthogonal DNA replication systems in vivo. ACS Synthetic Biology, 2018,7(7):1722-1729.
[38]   Ravikumar A, Arzumanyan G A, Obadi M K A, et al. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. Cell, 2018,175(7):1946-1957.
pmid: 30415839
[39]   Crook N, Abatemarco J, Sun J, et al. In vivo continuous evolution of genes and pathways in yeast. Nature Communications, 2016,7:13051.
doi: 10.1038/ncomms13051 pmid: 27748457
[40]   Romero P A, Arnold F H. Exploring protein fitness landscapes by directed evolution. Nature Reviews Molecular Cell Biology, 2009,10(12):866-876.
[41]   Feist A M, Zielinski D C, Orth J D, et al. Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metabolic Engineering, 2010,12(3):173-186.
[42]   Mohamed E T, Wang S, Lennen R M, et al. Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution. Microbial Cell Factories, 2017,16(1):204.
[43]   Caspeta L, Chen Y, Ghiaci P, et al. Altered sterol composition renders yeast thermotolerant. Science, 2014,346(6205):75-78.
pmid: 25278608
[44]   Xie W P, Lv X M, Ye L D, et al. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering, 2015,30:69-78.
pmid: 25959020
[45]   Engström K, Nyhleén J, Sandström A G, et al. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of α-substituted esters. Journal of the American Chemical Society, 2010,132(20):7038-7042.
[46]   Shepelin D, Hansen A S L, Lennen R, et al. Selecting the best: evolutionary engineering of chemical production in microbes. Genes, 2018,9(5):249.
[47]   Burgard A P, Pharkya P, Maranas C D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering, 2003,84(6):647-657.
doi: 10.1002/bit.10803 pmid: 14595777
[48]   Hassanpour N, Ullah E, Yousofshahi M, et al. Selection finder (SelFi): a computational metabolic engineering tool to enable directed evolution of enzymes. Metabolic Engineering Communications, 2017,4:37-47.
[49]   Zhou S, Shanmugam K T, Ingram L O. Functional replacement of the Escherichia coli D-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Applied and Environmental Microbiology, 2003,69(4):2237-2244.
[50]   Zhang X, Jantama K, Moore J C, et al. Production of L-alanine by metabolically engineered Escherichia coli. Applied and Environmental Microbiology, 2007,77(2):355-366.
[51]   Shen C R, Lan E I, Dekishima Y, et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli enabled by driving forces. Applied and Environmental Microbiology, 2011,77(9):2905-2915.
doi: 10.1128/AEM.03034-10 pmid: 21398484
[52]   Jantama K, Haupt M J, Svoronos S A, et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology and Bioengineering, 2008,99(5):1140-1153.
[53]   Tai Y S, Xiong M, Jambunathan P, et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nature Chemical Biology, 2016,12(4):247-253.
pmid: 26854668
[54]   Reyes L H, Gomez J M, Kao K C. Improving carotenoids production in yeast via adaptive laboratory evolution. Metabolic Engineering, 2014,21:26-33.
doi: 10.1016/j.ymben.2013.11.002 pmid: 24262517
[55]   Minty J J, Lesnefsky A A, Lin F M, et al. Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Microbial Cell Factories, 2011,10(1):18.
[56]   Zhuang Y, Yang G Y, Chen X, et al. Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme. Metabolic Engineering, 2017,42:25-32.
pmid: 28479190
[57]   Cho S M. Optimizing tyrosine production in yeast via in vivo continuous evolution. Austin: The University of Texas at Austin, 2016.
[58]   Tan Y M, Zhang Y, Han Y B, et al. Directed evolution of an α1, 3-fucosyltransferase using a single-cell ultrahigh-throughput screening method. Science Advances, 2019, 5(10): eaaw8451.
[59]   Kortmann M, Mack C, Baumgart M, et al. Pyruvate carboxylase variants enabling improved Lysine production from glucose identified by biosensor-based high-throughput fluorescence-activated cell sorting screening. ACS Synthetic Biology, 2019,8(2):274-281.
doi: 10.1021/acssynbio.8b00510 pmid: 30707564
[60]   Agresti J J, Antipov E, Abate A R, et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences, 2010,107(9):4004-4009.
[61]   Saleski T E, Kerner A R, Chung M T, et al. Syntrophic co-culture amplification of production phenotype for high-throughput screening of microbial strain libraries. Metabolic Engineering, 2019,54:232-243.
[62]   Monod J. La technique de culture continue: theorie et applications. Annales de l Institut Pasteur, 1950,79:390-410.
[63]   De Crecy E, Jaronski S, Lyons B, et al. Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnology, 2009,9:74.
[64]   Van Gerven N, Klein R D, Hultgren S J, et al. Bacterial amyloid formation: structural insights into curli biogensis. Trends in Microbiology, 2015,23(11):693-706.
[65]   Hope E A, Amorosi C J, Miller A W, et al. Experimental evolution reveals favored adaptive routes to cell aggregation in yeast. Genetics, 2017,206(2):1153-1167.
doi: 10.1534/genetics.116.198895 pmid: 28450459
[66]   Marliere P, Patrouix J, Doring V, et al. Chemical evolution of a bacterium’s genome. Angewandte Chemie International Edition, 2011,50(31):7109-7114.
[67]   Bouzon M, Perret A, Loreau O, et al. A synthetic alternative to canonical one-carbon metabolism. ACS Synthetic Biology, 2017,6(8):1520-1533.
doi: 10.1021/acssynbio.7b00029 pmid: 28467058
[68]   Jian X J, Guo X J, Wang J, et al. Microbial microdroplet culture system (MMC): an integrated platform for automated, high-throughput microbial cultivation and adaptive evolution. Biotechnology and Bioengineering, 2020,117(6):1724-1737.
doi: 10.1002/bit.27327 pmid: 32159223
[69]   Wang J, Jian X J, Xing X H, et al. Empowering a methanol-dependent Escherichia coli via adaptive evolution using a high-throughput microbial microdroplet culture system. Frontiers in Bioengineering and Biotechnology, 2020,8:570.
[70]   Horinouchi T, Minamoto T, Suzuki S, et al. Development of an automated culture system for laboratory evolution. Journal of Laboratory Automation, 2014,19(5):478-482.
doi: 10.1177/2211068214521417 pmid: 24526062
[71]   Miller A W, Befort C, Kerr E O, et al. Design and use of multiplexed chemostat arrays. Journal of Visualized Experiments, 2013,72:e50262.
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[4] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[5] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[6] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[7] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[8] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[9] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[10] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[11] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[12] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[13] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[14] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[15] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.