Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (1): 30-41    DOI: 10.13523/j.cb.2011007
    
Recent Advances in the High-throughput Engineering of Lanthipeptides
GUO Er-peng,ZHANG Jian-zhi(),SI Tong()
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen Institute of Synthetic Biology, Shenzhen 518055, China
Download: HTML   PDF(43838KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lanthipeptides are a major class of ribosomally synthesized and posttranslationally modified peptides (RiPPs) with diverse molecular structures and biological activities. New lanthipeptides obtained by genome mining and engineering are an important source of drug leads. Lanthipeptides are particularly amenable to bioengineering because their precursor peptides are encoded by genes and biosynthetic enzymes often exhibit high promiscuity, which is helpful for the efficient construction of lanthipeptides derivatives. This paper reviews the recent advances in high-throughput creation and screening of lanthipeptide derivatives. For mutant library creation, we discuss the introduction of noncanonical amino acids (ncAAs), combinatorial biosynthesis, and chimeric-leader approach for creating hybrid RiPPs. Then, we introduce large-scale structural and activity screening of lanthipeptide mutants assisted by cell surface display, reverse two-hybrid system, cellular autolysis, cell-free system, and microfluidics. Finally, we present future perspectives on the use of synthetic biology automation to streamline lanthipeptide bioengineering.



Key wordsLanthipeptide      Biosynthesis      High-throughout screening      Synthetic biology      Cell surface-display     
Received: 02 November 2020      Published: 09 February 2021
ZTFLH:  Q819  
Corresponding Authors: Jian-zhi ZHANG,Tong SI     E-mail: zhangjz@siat.ac.cn;tong.si@siat.ac.cn
Cite this article:

GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides. China Biotechnology, 2021, 41(1): 30-41.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2011007     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I1/30

Fig.1 Biosynthetic mechanisms for lanthipeptides (a)Four classes of lanthipeptides synthetases. Lanthipeptides were divided into four different classes according to the characteristics of the synthetases that produced thioether crosslinks. The dehydration and cyclization of class I lanthipeptides were driven by two enzymes. The dehydration cyclization of the other three classes of lanthipeptides was driven by a multi-domain enzyme. The cyclase domain of class III lanthipeptides exhibits sequence homology with the other three classes but contains no zinc ligands (b)Dehydration processes for Ser/Thr residuals. Two mechanisms are discovered for Dha/Dhb formation utilizing either Glu-tRNA or NTP for activating the side-chain hydroxyl group of Ser/Thr (c)Biosynthesis of lanthipeptides. Precursor peptides usually consist of a leader peptide and a core peptide. In some cases, a follower peptide is present. The leader/follower peptide is recognized by biosynthetic enzymes that install post-translational modifications on the core peptide and then removed to obtain a mature lanthipeptide product (d)Chemical structure of nisin A. Atoms derived from Cys, Ser, and Thr residues are shown in red, blue, and green, respectively
Fig.2 Modular construction and characterization of lanthipeptide derivatives (a)Scheme of combinatorial biosynthesis of lanthipeptide variants via modular domain assembly. Lanthipeptide derivatives were produced in L. lactis NZ9000 harboring the natural biosynthetic machinery for nisin (b)The plug and play system for genome mining. Potential core peptide sequences revealed by computational genome mining were fused to the C-terminus of the nisin leader peptide. Synthetic precursor peptides were expressed in the abovementioned L. lactis chassis for structural and bioactivity-based screening
Fig.3 Bioengineering of lanthipeptides using surface display approaches (a) Scheme of yeast surface display of lanthipeptides. The precursor peptide was fused to the C-terminus of Aga2 and modified by LctM, which was fused with an endoplasmic reticulum (ER)-retaining signal peptide fused at its C-terminus. The modified lantipeptide-Aga2 fusion was then secreted and attached to the surface-anchored Aga1 via disulfide bonds (b)Phage display of lanthipeptide. On the left:an N-to-C configuration of ompA-pIII-LP-CP fusion was slowly transported through the Sec pathway, so that sufficient interaction was permitted in the cytosol between the C-terminus of pIII and ProcM for PTM installation. On the right:an N-to-C configuration of ompA-LP-CP-pIII fusion was rapidly transported to the periplasm before modifications by cytosolic ProcM, so that unmodified lanthipeptide precursors was mostly displayed on phage surface. (Orange triangle:ompA signal peptide,LP:leader peptide,CP:core peptide)(c)Scheme of mRNA display of lanthipeptides. Photo-crosslinking and puromycin-peptide interactions mediates the formation of an mRNA-DNA-peptides complex, which was enriched by iterative rounds of affinity selection, reverse transcription, PCR amplification, and in vitro transcription and translation. Enrichment processed can be monitored using next-generation sequencing (NGS)
[1]   Arnison P G, Bibb M J, Bierbaum G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nature Product Reports, 2013,30:108-160.
[2]   Repka L M, Chekan J R, Nair S K, et al. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chemical Reviews, 2017,117(8):5457-5520.
doi: 10.1021/acs.chemrev.6b00591 pmid: 28135077
[3]   McIntosh J A, Donia M S, Schmidt E W. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Cheminform, 2009,26(4):537-559.
[4]   Funk M A, Van der Donk W A. Ribosomal natural products, tailored to fit. Accounts of Chemical Research, 2017,50(7):1577-1586.
[5]   Shin J M, Gwak J W, Kamarajan P, et al. Biomedical applications of nisin. Journal of Applied Microbiology, 2016,120(6):1449-1465.
pmid: 26678028
[6]   Cotter P D, Ross R P, Hill C. Bacteriocins - a viable alternative to antibiotics. Nature Reviews Microbiology, 2013,11(2):95-105.
doi: 10.1038/nrmicro2937 pmid: 23268227
[7]   Hillman J D. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie van Leeuwenhoek, 2002,82:361-366.
pmid: 12369203
[8]   Märki F, Hänni E, Fredenhagen A, et al. Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochemical Pharmacology, 1991,42(10):2027-2035.
pmid: 1741778
[9]   Krawczyk J M, Voller G H, Krawczyk B, et al. Heterologous expression and engineering studies of labyrinthopeptins, class III lantibiotics from actinomadura namibiensis. Chemistry & Biology, 2013,20(1):111-122.
doi: 10.1016/j.chembiol.2012.10.023 pmid: 23352145
[10]   Ferir G, Petrova M I, Andrei G, et al. The lantibiotic peptide labyrinthopeptin a1 demonstrates broad anti-hiv and anti-hsv activity with potential for microbicidal applications. PLoS One, 2013,8(5):e64010.
pmid: 23724015
[11]   Meindl K, Schmiederer T, Schneider K, et al. Labyrinthopeptins: a new class of carbacyclic lantibiotics. Angewandte Chemie International Edition, 2010,49(6):1151-1154.
doi: 10.1002/anie.200905773 pmid: 20082397
[12]   Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathogens & Global Health, 2015,109(7):309-318.
pmid: 26343252
[13]   Li B, Sher D, Kelly L, et al. Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proceedings of the National Academy of Sciences, 2010,107(23):10430-10435.
[14]   Van Hell A J, Kloosterman T G, Montalban-Lopez M. Discovery, production and modification of five novel lantibiotics using the promiscuous nisin modification machinery. ACS Synthetic Biology, 2016,5(10):1146-1154.
doi: 10.1021/acssynbio.6b00033 pmid: 27294279
[15]   Van Staden A D P, Faure L M, Vermeulen R R, et al. Functional expression of gfp-fused class I lanthipeptides in Escherichia coli. ACS Synthetic Biology, 2019,8(10):2220-2227.
pmid: 31553571
[16]   Field D, Cotter P D, Hill C, et al. Bioengineering lantibiotics for therapeutic success. Frontiers in Microbiology, 2015,6:1363.
doi: 10.3389/fmicb.2015.01363 pmid: 26640466
[17]   Montalban-Lopez M, Van Heel A J, Kuipers O P. Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials. Fems Microbiology Reviews, 2017,41(1):5-18.
pmid: 27591436
[18]   Field D, Begley M, O’Connor P M, et al. Bioengineered nisin a derivatives with enhanced activity against both gram positive and gram negative pathogens. PLoS One, 2012,7(10):e46884.
doi: 10.1371/journal.pone.0046884 pmid: 23056510
[19]   Breukink E, de Kruijff B. Lipid II as a target for antibiotics. Nature Reviews Drug Discovery, 2006,5(4):321-332.
pmid: 16531990
[20]   Zhou L, Van Heel A J, Kuipers O P. The length of a lantibiotic hinge region has profound influence on antimicrobial activity and host specificity. Frontiers in Microbiology, 2015,6:11.
doi: 10.3389/fmicb.2015.00011 pmid: 25688235
[21]   Si T, Tian Q, Min Y, et al. Rapid screening of lanthipeptide analogs via in-colony removal of leader peptides in Escherichia coli. Journal of the American Chemical Society, 2018,140(38):11884-11888.
doi: 10.1021/jacs.8b05544 pmid: 30183279
[22]   Barbosa J, Caetano T, Mosker E, et al. Lichenicidin rational site-directed mutagenesis library: a tool to generate bioengineered lantibiotics. Biotechnology and Bioengineering, 2019,116(11):3053-3062.
doi: 10.1002/bit.27130 pmid: 31350903
[23]   Field D, Molloy E M, Iancu C, et al. Saturation mutagenesis of selected residues of the α-peptide of the lantibiotic lacticin 3 147 yields a derivative with enhanced antimicrobial activity. Microbial Biotechnology, 2013,6(5):564-575.
pmid: 23433070
[24]   Kers J A, Sharp R E, Muley S, et al. Blueprints for the rational design of therapeutic mutacin 1 140 variants. Chemical Biology & Drug Design, 2018,92(6):1940-1953.
doi: 10.1111/cbdd.13365 pmid: 30010233
[25]   Escano J, Ravichandran A, Salamat B, et al. Carboxyl analogue of mutacin 1 140, a scaffold for lead antibacterial discovery. Applied and Environmental Microbiology, 2017,83(14):e00668-17.
doi: 10.1128/AEM.00668-17 pmid: 28500042
[26]   Kers J A, Sharp R E, Defusco A W, et al. Mutacin 1 140 lantibiotic variants are efficacious against clostridium difficile infection. Frontiers in Microbiology, 2018,9:415.
pmid: 29615987
[27]   Schmitt S, Montalban-Lopez M, Peterhoff D, et al. Analysis of modular bioengineered antimicrobial lanthipeptides at nanoliter scale. Nature Chemical Biology, 2019,15(5):437-443.
doi: 10.1038/s41589-019-0250-5 pmid: 30936500
[28]   Baumann T, Nickling J H, Bartholomae M, et al. Prospects of in vivo incorporation of non-canonical amino acids for the chemical diversification of antimicrobial peptides. Frontiers in Microbiology, 2017,8:124.
[29]   Budisa N. Expanded genetic code for the engineering of ribosomally synthetized and post-translationally modified peptide natural products (RiPPs). Current Opinion in Biotechnology, 2013,24(4):591-598.
pmid: 23537814
[30]   Buer B C, Marsh E N. Fluorine: A new element in protein design. Protein Science, 2012,21(4):453-462.
[31]   An L, Van der Donk W A. Recent progress in lanthipeptide biosynthesis, discovery, and engineering. Compre hersive products III. 3 rd ed . Elsevier, 2020: 119-165.
[32]   Levengood M R, Knerr P J, Oman T J, et al. In vitro mutasynthesis of lantibiotic analogues containing nonproteinogenic amino acids. Journal of the American Chemical Society, 2009,131(34):12024-12025.
doi: 10.1021/ja903239s pmid: 19655738
[33]   Johnson J A, Lu Y Y, Van Deventer J A, et al. Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Current Opinion in Chemical Biology, 2010,14(6):774-780.
[34]   Zhou L, Shao J, Li Q, et al. Incorporation of tryptophan analogues into the lantibiotic nisin. Amino Acids, 2016,48:1309-1318.
doi: 10.1007/s00726-016-2186-3 pmid: 26872656
[35]   Stromgaard A, Jensen A A, Stromgaard K. Site-specific incorporation of unnatural amino acids into proteins. Chembiochen, 2004,5(7):909-916.
[36]   Shi Y X, Yang X, Garg N, et al. Production of lantipeptides in Escherichia coli. Journal of the American Chemical Society, 2011,133(8):2338-2341.
pmid: 21114289
[37]   Bindman N A, Bobeica S C, Liu W R, et al. Facile removal of leader peptides from lanthipeptides by incorporation of a hydroxy acid. Journal of the American Chemical Society, 2015,137(22):6975-6978.
pmid: 26006047
[38]   Kakkar N, Perez J G, Liu W R, et al. Incorporation of nonproteinogenic amino acids in class i and ii lantibiotics. ACS Chemical Biology, 2018,13(4):951-957.
pmid: 29439566
[39]   Gan Q L, Fan C G. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis. Biochimica et Biophysica Acta (BBA)-General Subjects, 2017,1861(11Pt B):3047-3052.
[40]   Pokrovskaya V, Belakhov V, Hainrichson M, et al. Design, synthesis, and evaluation of novel fluoroquinolone-aminoglycoside hybrid antibiotics. Journal of Medicinal Chemistry, 2009,52(8):2243-2254.
doi: 10.1021/jm900028n pmid: 19301822
[41]   Wiedemann I, Breukink E, Van Kraaij C, et al. Specific binding of nisin to the peptidoglycan precursor lipid ii combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. The Journal of Biological Chemistry, 2001,276(3):1772-1779.
pmid: 11038353
[42]   Mccomas C C, Crowley B M, Boger D L . Partitioning the loss in vancomycin binding affinity for D-Ala-D-Lac into lost H-bond and repulsive lone pair contributions. Journal of the American Chemical Society, 2003,125(31):9314-9315.
doi: 10.1021/ja035901x pmid: 12889959
[43]   Arnusch C J, Bonvin A M J J, Verel A M, et al. The vancomycin-nisin(1-12) hybrid restores activity against vancomycin resistant Enterococci. Biochemistry, 2008,47(48):12661-12663.
doi: 10.1021/bi801597b pmid: 18989934
[44]   Helander I M, Mattila-Sandholm T . Permeability barrier of the gram-negative bacterial outer membrane with special reference to nisin. International Journal of Food Microbiology, 2000,60(2-3):153-161.
pmid: 11016605
[45]   Bechinger B, Gorr S U. Antimicrobial peptides: mechanisms of action and resistance. Journal of Dental Research, 2017,96(3):254-260.
pmid: 27872334
[46]   Li Q, Montalban-Lopez M, Kuipers O P. Increasing the antimicrobial activity of nisin-based lantibiotics against gram-negative pathogens. Applied and Environmental Microbiology, 2018,84(12):e00052-18.
doi: 10.1128/AEM.00052-18 pmid: 29625984
[47]   Codd R, Richardson-Sanchez T, Telfer T J, et al. Advances in the chemical biology of desferrioxamine b. ACS Chemical Biology, 2018,13(1):11-25.
pmid: 29182270
[48]   Yoganathan S, Sit C S, Vederas J C. Chemical synthesis and biological evaluation of gallidermin-siderophore conjugates. Organic & Biomolecular Chemistry, 2011,9(7):2133-2141.
pmid: 21290068
[49]   Götz F, Perconti S, Popella P, et al. Epidermin and gallidermin: Staphylococcal lantibiotics. International Journal of Medical Microbiology, 2014,304(1):63-71.
doi: 10.1016/j.ijmm.2013.08.012
[50]   Van Heel A J, Mu D, Montalbán-López M, et al. Designing and producing modified, new-to-nature peptides with antimicrobial activity by use of a combination of various lantibiotic modification enzymes. ACS Synthetic Biology, 2013,2(7):397-404.
doi: 10.1021/sb3001084 pmid: 23654279
[51]   Burkhart B J, Kakkar N, Hudson G A, et al. Chimeric leader peptides for the generation of non-natural hybrid PiPP products. ACS Central Science, 2017,3(6):629-638.
doi: 10.1021/acscentsci.7b00141
[52]   Löfblm J. Bacterial display in combinatorial protein engineering. Biotechnology Journal, 2011,6(9):1115-1129.
doi: 10.1002/biot.201100129 pmid: 21786423
[53]   Bosma T, Kuipers A, Bulten E, et al. Bacterial display and screening of posttranslationally thioether-stabilized peptides. Applied and Environmental Microbiology, 2011,77(19):6794-6801.
doi: 10.1128/AEM.05550-11
[54]   Kieke M C, Cho B K, Boder E T, et al. Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Engineering, 1997,10(11):1303-1310.
doi: 10.1093/protein/10.11.1303 pmid: 9514119
[55]   Andreu C, Del Olmo M L. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Applied Microbiology and Biotechnology, 2018,102(6):2543-2561.
doi: 10.1007/s00253-018-8827-6 pmid: 29435617
[56]   McMahon C, Baier A S, Pascolutti R, et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nature Structural & Molecular Biology, 2018,25(3):289-296.
doi: 10.1038/s41594-018-0028-6 pmid: 29434346
[57]   Hetrick K J, Walker M C, Van der Donk W A. Development and application of yeast and phage display of diverse lanthipeptides. ACS Central Science, 2018,4(4):458-467.
doi: 10.1021/acscentsci.7b00581 pmid: 29721528
[58]   Urban J H, Moosmeier M A, Aumuller T, et al. Phage display and selection of lanthipeptides on the carboxy-terminus of the gene-3 minor coat protein. Nature Communications, 2017,8(1):1500.
doi: 10.1038/s41467-017-01413-7 pmid: 29138389
[59]   Huang Y, Wiedmann M M, Suga H. RNA display methods for the discovery of bioactive macrocycles. Chemical Reviews, 2019,119(17):10360-10391.
doi: 10.1021/acs.chemrev.8b00430 pmid: 30395448
[60]   Hofmann F T, Szostak J W, Seebeck F P. In vitro selection of functional lantipeptides. Journal of the American Chemical Society, 2012,134(19):8038-8041.
doi: 10.1021/ja302082d
[61]   Yang X, Lennard K R, He C, et al. A lanthipeptide library used to identify a protein-protein interaction inhibitor. Nature Chemical Biology, 2018,14(4):375-380.
doi: 10.1038/s41589-018-0008-5 pmid: 29507389
[62]   Cheng F, Takala T M, Saris P E. Nisin biosynthesis in vitro. Journal of Molecular Microbiology and Biotechnology, 2007,13(4):248-254.
doi: 10.1159/000104754 pmid: 17827976
[63]   Liu R, Zhang Y C, Zhai G Q, et al. A cell-free platform based on nisin biosynthesis for discovering novel lanthipeptides and guiding their overproduction in vivo. Advanced Science, 2020,7(17):2001616.
doi: 10.1002/advs.202001616 pmid: 32995136
[64]   Hillson N, Caddick M, Cai Y, et al. Building a global alliance of biofoundries. Nature Communications, 2019,10:2040.
doi: 10.1038/s41467-019-10079-2 pmid: 31068573
[65]   张建志, 付立豪, 唐婷, 等. 基于合成生物学策略的酶蛋白元件规模化挖掘. 合成生物学, 2020,1(3):319-336.
[65]   Zhang J Z, Fu L H, Tang T, et al. Scalable mining of proteins for biocatalysis via synthetic biology. Synthetic Biology Journal, 2020,1(3):319-336.
[66]   唐婷, 付立豪, 郭二鹏, 等. 自动化合成生物技术与工程化设施平台. 科学通报. [2021-01-23]. http://kns.cnki.net/kcms/detail/11.1784.N.20210122.1405.002.html.
[66]   Tang T, Fu L H, Guo E P, et al. Automation in synthetic biology using biological foundries. Chinese Science Bulletin.[2021-01-23]. http://kns.cnki.net/kcms/detail/11.1784.N.20210122.1405.002.html.
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[4] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[5] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[6] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[7] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[8] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[9] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[10] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[11] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[12] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[13] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[14] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[15] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.