Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (9): 110-125    DOI: 10.13523/j.cb.2104047
    
Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase
HUANG Huan-bang1,2,3,WU Yang1,2,3,YANG You-hui1,2,3,WANG Zhao-guan1,2,3,QI Hao1,2,3,*()
1 School of Chemical Engineering and Technology, Tianjin 300072,China
2 Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin 300072,China
3 Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072,China
Download: HTML   PDF(2008KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The coding information used to build proteins exists in highly conserved codon table. In nature, organisms use 20 native amino acids to synthesize proteins of different lengths and orders to perform a variety of biological functions. In recent years, with the rapid development of synthetic biology, it is possible to controllably direct incorporation of non-canonical amino acids in protein synthesis. Non-canonical amino acids with functional side groups could extremely expand the structure and function of proteins, which could also be of benefit in the research of new synthetic biological tools and biological processes. The diversity of side chains serves in many fields, such as protein structure research, functional regulation, constructions of new bio-materials and bio-pharmaceutical industry development. This paper introduces the basic principle of the genetic codon expansion technology, and organizes the efficiency optimization strategies as well as new methods of constructing mutant library. In addition, it also summarizes the cutting-edge progress of the codon expansion technology in the field of bio-medicine. Finally, we summarize the current challenges faced by this technology, such as the limited number of available codons, the limited variety of orthogonal translation systems, and the low efficiency of multiple-incorporation of unnatural amino acids. We hope that these contents could help researchers establish suitable methods for the insertion of unnatural amino acids and promote the further development of this technology.



Key wordsGenetic code expansion      Non-canonical amino acid      Bio-orthogonal      Synthetic biology      Computer-aided design     
Received: 26 April 2021      Published: 30 September 2021
ZTFLH:  Q819  
Corresponding Authors: Hao QI     E-mail: haoq@tju.edu.cn
Cite this article:

HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase. China Biotechnology, 2021, 41(9): 110-125.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2104047     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I9/110

Fig.1 Schematic of expanded genetic code methodology (a) Endogenous translation system in E. coli: AaRS charge its cognate tRNA with AA and then AA-tRNA complex is transferred to ribosome by elongation factor Tu (EF-Tu), where class I release factor (RF1) recognize stop codon and terminate the protein synthesis (b) Methodology of genetic code expansion: ncAA incorporation in response to amber codon is by means of o-aaRS/tRNA pair. The suppression efficiency is impeded by competition of RF1 (c) Genome manipulation of RF1 knock-out (d) Improved OTS includes evolved and optimized aaRS/tRNA pair and modified EF-Tu. The nonsense suppression efficiency is enhanced by RF1-depletion strain or orthogonal ribosome with mutant 16S rRNA
Fig.2 Novel methods for aaRS engineering (a) Multiplex automated genome engineering (b) Phage-assisted continuous evolution
Fig.3 Non-canonical amino acids that have been genetically encoded in proteins via MjTyrRS/tRNA pair The red box indicates that the amino acids contain -NO2 group, while the green, yellow, red and gray one is in response to halogen (F, Cl, Br, I), hydroxyl, primary or secondary amine and cyano or alkynyl
Fig.4 Mutation frequency statistics of MjTyrRS (a) Sites of mutation in response to protein structure (PDB:1J1U) in the circles indicate the position and the size correlate to the frequency of mutations. The mutant positions in the structure are colored red (b) The individual mutation of each site whose frequency are more than 3 times is shown in stack histogram
Fig.5 Application of protein bearing ncAAs in biology
氨基酸
序号
氨基酸名称 Mj TyrRS突变位点 年份 DOI
1 4-Propargyloxy-l-phenylalanine(pPR) Y32L,D158S,I159M,L162K,A167H 2021 10.1002/cbic.202000663
2 4-(Trimethylsilyl)phenylalanine
(TMSiPhe)
Y32H,I63G,L65V,H70Q,D158G,I159G,V164G 2020 10.1038/s41467-020-18433-5
3 3-Nitro-tyrosine Y32H,L65L,H70T,D158H,I159A,L162R 2020 10.1016/j.jmb.2020.06.014
4 β-(1-azulenyl)-l-alanine (AzAla) Y32A,L65W,H70G,F108H,Q109N,D158A,L162N 2019 10.1002/anie.201812995
5 Ortho-nitrobenzyl-tyrosine (ONBY) Y32A,L65A,H70N,G105Q,Q109A,D158S,I159A,L162A,A167S,A180Q,D286R 2019 10.3390/ijms20092343
6 p-boronophenylalanine (Bpa) Y32S,L65A,H70M,D158S,L162E,D286R 2018 10.1021/acs.biochem.8b00171
7 Biphenylalanine (BipA) Y32H,D61V,L65H,H70Q,F108W,Q109M,D158G,L162K 2018 10.1073/pnas.1715137115
8 p-Iodo-L-phenylalanine (pIF) Y32L,L69F,E107S,D158P,I159L,L162E,V235I 2017 10.1038/nCHeMBIO.2474
9 p-Nitro-L-phenylalanine (pNF) Y32L,E107S,D158P,I159L,H160N,L162E 2017 10.1038/nCHeMBIO.2474
10 4-Phosphomethyl-L-phenylalanine (Pmp) Y32L,L65A,F108K,Q109H,D158G,L162K 2017 10.1038/nchembio.2405
11 o-Phosphotyrosine (pTyr) Y32L,L65A,F108K,Q109H,D158G,L162K 2017 10.1038/nchembio.2405
12 p-Acetyl-L-phenylalanine Y32L,D158G,I159C,L162R,A167D,R257G (pAcFRS.1.t1) 2015 10.1038/nbt.3372
13 p-Azido-L-phenylalanine Y32T,E107T,F108Y,Q109M,D158P,L162Q,R257G(pAzFRS.2.t1) 2015 10.1038/nbt.3372
氨基酸
序号
氨基酸名称 Mj TyrRS突变位点 年份 DOI
14 4-(2'-Bromoisobutyramido)-
phenylalanine (BibaF)
Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
15 4-Transcycloocten-amidopheylalanine (Tco-amF) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
16 Acridon-2-ylalanine (Acd) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
17 4-Acetamidopheylalanine (AmF) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
18 4-(6-Methyl-s-tetrazine-3-yl)
aminophenylalanine (Tet-F)
Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
19 4-Aminophenylalanine (AF) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
20 4-Bromoisobutyryloxymethyl-l-phenylalanine (BiF) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
21 4-Benzoyl-phenylalanine (Bpa) Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
22 o-Benzyl-L-tyrosine Y32G,L65E,F108W,Q109M,D158S,L162K 2014 10.1002/cbic.201402180
23 p-Acrylamido-(S)-L-phenylalanine (AcrF) Y32V,L65Y,F108H,Q109G,D158G,L162E,D286R 2014 10.1021/ja502851h
24 p-Vinylsulfonamido -(S)-L-
phenylalanine (VSF)
Y32G,L65Y,F108H,Q109G,D158G,I159L,L162Q,D286R 2014 10.1021/ja502851h
25 2-Amino-3-(6-hydroxy-2-naphthyl)-propanoic acid (NpOH) Y32E,L65T,D158S,I159A,H160P,Y161T,L162Q,A167W,D286R 2013 10.1021/bc400168u
26 7-MethylCoumarinyl-ethylGly Y32E,L65H,A67G,H70G,F108Y,Q109H,D158G,L162G 2011 10.1021/ja106416g
27 p-(2-Tetrazole)-L-phenylalanine Y32I,L65I,Q109M,D158G,L162V,V164G 2010 10.1021/ja104350y
28 o-Nitrobenzyl-2,6-difluoro-L-tyrosine Y32G,L65G,H70M,F108G,D158S,I159M,L162E 2010 10.1021/bi100013s
29 o-Nitrobenzyl-3-difluoro-L-tyrosine Y32G,L65G,H70N,F108G,D158S,I159M,L162N 2010 10.1021/bi100013s
30 o-Nitrobenzyl-2-difluoro-L-tyrosine Y32G,L65G,H70N,F108G,D158S,I159M,L162N 2010 10.1021/bi100013s
31 p-Ethynyl-L-phenylalanine Y32L,L65V,F108W,Q109M,D158G,I159P 2009 10.1021/bi900426d
32 2-Nitro-l-L-phenylalanine Y32G,L65H,A67G,H70G,F108L,Q109S,Y114S,D158T,I159Y,L162D 2009 10.1016/j.chembiol.2009.01.013
33 Thyronine A31V,Y32G,E107P,D158S,I159S 2009 10.1039/b904032c
34 3-Fluoro-4-nitro-p-benzoyl-L-phenylalanine(3F-4nitro-Bpa) Y32G,E107P,D158T,I159S,V164A 2009 10.1039/b904032c
35 4-Nitro-p-benzoyl-L-phenylalanine(4Nitro-Bpa) Y32G,E107P,D158T,I159S,V164A 2009 10.1039/b904032c
36 4-Iodo-p-benzoyl-L-phenylalanine(4I-Bpa) Y32G,E107P,D158T,I159S,V164A 2009 10.1039/b904032c
37 2,6-Difluoro-p-benzoyl-L-
phenylalanine (2,6dF-Bpa)
Y32G,E107P,D158T,I159S 2009 10.1039/b904032c
38 4-Fluoro-p-benzoyl-L-henylalanine(4F-Bpa) A31V,Y32G,E107P,D158S,I159S 2009 10.1039/b904032c
39 p-Benzoyl-L-Phenylalanine(p-Bpa) A31V,Y32G,E107P,D158S,I159S 2009 10.1039/b904032c
40 HQ-Ala Y32V,L65M,H70T,F108R,Q109E,D158S,I159S 2009 10.1021/ja808340b
41 3-Iodo-L-tyrosine H70A,D158T 2009 10.1016/j.str.2009.01.008
氨基酸
序号
氨基酸名称 Mj TyrRS突变位点 年份 DOI
42 p-Cynao-L-phenylalanine Y32L,L65V,F108W,Q109M,D158G,I159P 2009 10.1021/bi900426d
43 p-OCF3-Phe Y32A,L65S,F108Q,H109A,D158A,L162Y 2008 10.1021/ja801602q
44 3-Nitro-L-tyrosine Y32R,L65L,H70L,Q23162M,D158G,I159L,L162H 2008 10.1021/ja710100d
45 PhenylselenoCys Y32L,A67S,H70N,A167Q 2007 10.1002/ange.200702305
46 (2,2'-Bipyridin-5-yl) Ala(BpyAla) Y32G,L65Y,H70A,F108F,Q109Q,Q155E,D158G,I159W,L162S 2007 10.1002/anie.200703397
47 3-Amino-L-tyrosine (NH2Y) Y32Q,L65E,F108G,Q109L,L162Y 2007 10.1021/ja076043y
48 p-Carboxymethyl-L-phenylalanine (pCMF) Y32S,L65A,F108K,Q109H,D158G,L162K 2007 10.1021/cb700083w
49 TfmdPhe Y32I,H70F,E107S,Q109M,D158P,I159L,L162E 2007 10.1002/cbic.200700460
50 Sulfo-L-tyrosine Y32L,L65P,D158G,I159C,L162K 2006 10.1038/nbt1254
51 Phe-4'-azobenzene (AzoPhe) Y32G,L65E,F108A,Q109E,D158G,L162H 2006 10.1021/ja055467u
52 pAMF Y32T,E107T,D158P,I159L,L162A 2006 10.1021/ja061099y
53 p-Methyl-L-phenylalanine Y32L,L65A,F108S,H109H,D158A,L162M 2006 10.1021/ja061099y
54 (7-Hydroxycoumarin-4-yl)ethylGly Y32E,L65H,A67G,H70G,F108Y,Q109H,D158G,L162G 2006 10.1021/ja062666k
55 m-Acetyl-L-phenylalanine Y32L,D158E,I159P,H160Q,Y161G,L162R,G163D 2003 10.1021/bi0300231
56 3,4-Hydroxyl-L-phenylalanine Y32L,A67S,H70N,A167Q 2003 10.1021/ja038242x
57 p-Isopropyl-L-phenylalanine Y32G,T102C,V103A,E107P,D158G,I159Y 2002 10.1038/nbt742
58 O-Allyl-L-tyrosine Y32S,E107T,D158T,I159Y,L162A 2002 10.1038/nbt742
59 3-(2-Naphthyl)-L-alanine Y32L,D158P,I159A,L162Q,A167V 2002 10.1021/ja012307j
60 p-Methoxyl-L-phenylalanine Y32Q,D158A,E107T,L162P 2001 10.1126/science.1060077
Table S1 Structures of ncAAs and corresponding mutations
[1]   Sakamoto S, Hamachi I. Recent progress in chemical modification of proteins. Analytical Sciences, 2019, 35(1):5-27.
doi: 10.2116/analsci.18R003 pmid: 30318491
[2]   Nickling J H, Baumann T, Schmitt F J, et al. Antimicrobial peptides produced by selective pressure incorporation of non-canonical amino acids. Journal of Visualized Experiments, 2018(135). DOI: 10.3791/57551.
doi: 10.3791/57551
[3]   Baumann T, Schmitt F J, Pelzer A, et al. Engineering ‘golden' fluorescence by selective pressure incorporation of non-canonical amino acids and protein analysis by mass spectrometry and fluorescence. Journal of Visualized Experiments, 2018(134). DOI: 10.3791/57017.
doi: 10.3791/57017
[4]   Taskent-Sezgin H, Chung J, Banerjee P S, et al. Azidohomoalanine: a conformationally sensitive IR probe of protein folding, protein structure, and electrostatics. Angewandte Chemie (International Ed in English), 2010, 49(41):7473-7475.
doi: 10.1002/anie.v49:41
[5]   Morimoto J, Hayashi Y, Iwasaki K, et al. Flexizymes: their evolutionary history and the origin of catalytic function. Accounts of Chemical Research, 2011, 44(12):1359-1368.
doi: 10.1021/ar2000953 pmid: 21711008
[6]   Gunnoo S B, Madder A. Chemical protein modification through cysteine. ChemBioChem, 2016, 17(7):529-553.
doi: 10.1002/cbic.201500667 pmid: 26789551
[7]   Murata H, Carmali S, Baker S L, et al. Solid-phase synthesis of protein-polymers on reversible immobilization supports. Nature Communications, 2018, 9(1):1-10.
doi: 10.1038/s41467-017-02088-w
[8]   de la Torre D, Chin J W. Reprogramming the genetic code. Nature Reviews Genetics, 2021, 22(3):169-184.
doi: 10.1038/s41576-020-00307-7
[9]   Hankore E D, Zhang L Y, Chen Y, et al. Genetic incorporation of noncanonical amino acids using two mutually orthogonal quadruplet codons. ACS Synthetic Biology, 2019, 8(5):1168-1174.
doi: 10.1021/acssynbio.9b00051 pmid: 30995842
[10]   Fredens J, Wang K H, de la Torre D, et al. Total synthesis of Escherichia coli with a recoded genome. Nature, 2019, 569(7757):514-518.
doi: 10.1038/s41586-019-1192-5
[11]   Fischer E C, Hashimoto K, Zhang Y, et al. New codons for efficient production of unnatural proteins in a semisynthetic organism. Nature Chemical Biology, 2020, 16(5):570-576.
doi: 10.1038/s41589-020-0507-z pmid: 32251411
[12]   Noren C, Anthony-Cahill S, Griffith M, et al. A general method for site-specific incorporation of unnatural amino acids into proteins. Science, 1989, 244(4901):182-188.
pmid: 2649980
[13]   Kwok Y, Wong J T. Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Canadian Journal of Biochemistry, 1980, 58(3):213-218.
pmid: 6989454
[14]   Wang L, Brock A, Herberich B, et al. Expanding the genetic code of Escherichia coli. Science, 2001, 292(5516):498-500.
pmid: 11313494
[15]   Xie J M, Schultz P G. A chemical toolkit for proteins-an expanded genetic code. Nature Reviews Molecular Cell Biology, 2006, 7(10):775-782.
doi: 10.1038/nrm2005
[16]   Fechter P, Rudinger-Thirion J, Tukalo M, et al. Major tyrosine identity determinants in Methanococcus jannaschii and Saccharomyces cerevisiae tRNA(Tyr) are conserved but expressed differently. European Journal of Biochemistry, 2001, 268(3):761-767.
pmid: 11168416
[17]   Steer B A, Schimmel P. Major anticodon-binding region missing from an archaebacterial tRNA synthetase. Journal of Biological Chemistry, 1999, 274(50):35601-35606.
pmid: 10585437
[18]   Richardson C J, First E A. Hyperactive editing domain variants switch the stereospecificity of tyrosyl-tRNA synthetase. Biochemistry, 2016, 55(17):2526-2537.
doi: 10.1021/acs.biochem.6b00157 pmid: 27064538
[19]   Wang L, Schultz P G. A general approach for the generation of orthogonal tRNAs. Chemistry & Biology, 2001, 8(9):883-890.
doi: 10.1016/S1074-5521(01)00063-1
[20]   Wang L, Xie J M, Schultz P G. Expanding the genetic code. Annual Review of Biophysics and Biomolecular Structure, 2006, 35(1):225-249.
doi: 10.1146/annurev.biophys.35.101105.121507
[21]   Kobayashi T, Nureki O, Ishitani R, et al. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nature Structural & Molecular Biology, 2003, 10(6):425-432.
doi: 10.1038/nsb934
[22]   Zhang Y, Wang L, Schultz P G, et al. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine. Protein Science, 2005, 14(5):1340-1349.
pmid: 15840835
[23]   Tian Y S, Xu J, Zhao W, et al. Identification of a phosphinothricin-resistant mutant of rice glutamine synthetase using DNA shuffling. Scientific Reports, 2015, 5:15495.
doi: 10.1038/srep15495
[24]   Ryu Y, Schultz P G. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nature Methods, 2006, 3(4):263-265.
doi: 10.1038/nmeth864
[25]   Young T S, Ahmad I, Yin J, et al. An enhanced system for unnatural amino acid mutagenesis in E. coli. Journal of Molecular Biology, 2010, 395(2):361-374.
doi: 10.1016/j.jmb.2009.10.030
[26]   Chatterjee A, Sun S B, Furman J L, et al. A versatile platform for single-and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry, 2013, 52(10):1828-1837.
doi: 10.1021/bi4000244 pmid: 23379331
[27]   Singh V, Braddick D. Recent advances and versatility of MAGE towards industrial applications. Systems and Synthetic Biology, 2015, 9(1):1-9.
[28]   Amiram M, Haimovich A D, Fan C G, et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature Biotechnology, 2015, 33(12):1272-1279.
doi: 10.1038/nbt.3372
[29]   Badran A H, Liu D R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nature Communications, 2015, 6:8425.
doi: 10.1038/ncomms9425 pmid: 26443021
[30]   Bryson D I, Fan C G, Guo L T, et al. Continuous directed evolution of aminoacyl-tRNA synthetases. Nature Chemical Biology, 2017, 13(12):1253-1260.
doi: 10.1038/nchembio.2474 pmid: 29035361
[31]   Sun R H, Zheng H, Fang Z Z, et al. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-l-phenylalanine. Biochemical and Biophysical Research Communications, 2010, 391(1):709-715.
doi: 10.1016/j.bbrc.2009.11.125
[32]   Baumann T, Hauf M, Richter F, et al. Computational aminoacyl-tRNA synthetase library design for photocaged tyrosine. International Journal of Molecular Sciences, 2019, 20(9):2343.
doi: 10.3390/ijms20092343
[33]   Duan B Y, Sun Y F. Integration of machine learning improves the prediction accuracy of molecular modelling for M. jannaschii tyrosyl-tRNA synthetase substrate specificity. Progress in Biochemistry and Biophysics, 2020. DOI: org/10.1101/2020.06.26.174524.
doi: org/10.1101/2020.06.26.174524
[34]   Cervettini D, Tang S, Fried S D, et al. Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs. Nature Biotechnology, 2020, 38(8):989-999.
doi: 10.1038/s41587-020-0479-2 pmid: 32284585
[35]   Guo J T, Melançon C E, Lee H S, et al. Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. Angewandte Chemie (International Ed in English), 2009, 48(48):9148-9151.
doi: 10.1002/anie.200904035
[36]   Gan R, Perez J G, Carlson E D, et al. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins. Biotechnology and Bioengineering, 2017, 114(5):1074-1086.
doi: 10.1002/bit.v114.5
[37]   Fan C G, Ip K, Söll D. Expanding the genetic code of Escherichia coli with phosphotyrosine. FEBS Letters, 2016, 590(17):3040-3047.
doi: 10.1002/1873-3468.12333
[38]   Haruna K I, Alkazemi M H, Liu Y C, et al. Engineering the elongation factor Tu for efficient selenoprotein synthesis. Nucleic Acids Research, 2014, 42(15):9976-9983.
doi: 10.1093/nar/gku691
[39]   Wang K H, Neumann H, Peak-Chew S Y, et al. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nature Biotechnology, 2007, 25(7):770-777.
doi: 10.1038/nbt1314
[40]   Neumann H, Wang K H, Davis L, et al. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature, 2010, 464(7287):441-444.
doi: 10.1038/nature08817
[41]   Maini R, Nguyen D T, Chen S X, et al. Incorporation of β-amino acids into dihydrofolate reductase by ribosomes having modifications in the peptidyltransferase center. Bioorganic & Medicinal Chemistry, 2013, 21(5):1088-1096.
doi: 10.1016/j.bmc.2013.01.002
[42]   Dedkova L M, Fahmi N E, Paul R, et al. Β-puromycin selection of modified ribosomes for in vitro incorporation of β-amino acids. Biochemistry, 2012, 51(1):401-415.
doi: 10.1021/bi2016124 pmid: 22145951
[43]   Dedkova L M, Fahmi N E, Golovine S Y, et al. Enhanced d-amino acid incorporation into protein by modified ribosomes. Journal of the American Chemical Society, 2003, 125(22):6616-6617.
pmid: 12769555
[44]   Orelle C, Carlson E D, Szal T, et al. Protein synthesis by ribosomes with tethered subunits. Nature, 2015, 524(7563):119-124.
doi: 10.1038/nature14862
[45]   Fried S D, Schmied W H, Uttamapinant C, et al. Ribosome subunit stapling for orthogonal translation in E.coli. Angewandte Chemie (International Ed in English), 2015, 54(43):12791-12794.
doi: 10.1002/anie.201506311
[46]   Luo X Z, Fu G S, Wang R E, et al. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nature Chemical Biology, 2017, 13(8):845-849.
doi: 10.1038/nchembio.2405
[47]   Zhang M S, Brunner S F, Huguenin-Dezot N, et al. Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing. Nature Methods, 2017, 14(7):729-736.
doi: 10.1038/nmeth.4302
[48]   Ratnayake N D, Theisen C, Walter T, et al. Whole-cell biocatalytic production of variously substituted β-aryl- and β-heteroaryl-β-amino acids. Journal of Biotechnology, 2016, 217:12-21.
doi: 10.1016/j.jbiotec.2015.10.012 pmid: 26528624
[49]   Short G F, Golovine S Y, Hecht S M. Effects of release factor 1 on in vitro protein translation and the elaboration of proteins containing unnatural amino acids. Biochemistry, 1999, 38(27):8808-8819.
pmid: 10393557
[50]   Yin G, Stephenson H T, Yang J H, et al. RF1 attenuation enables efficient non-natural amino acid incorporation for production of homogeneous antibody drug conjugates. Scientific Reports, 2017, 7:3026.
doi: 10.1038/s41598-017-03192-z
[51]   Loscha K V, Herlt A J, Qi R H, et al. Multiple-site labeling of proteins with unnatural amino acids. Angewandte Chemie International Edition, 2012, 51(9):2243-2246.
doi: 10.1002/anie.201108275
[52]   Sando S, Ogawa A, Nishi T, et al. In vitro selection of RNA aptamer against Escherichia coli release factor 1. Bioorganic & Medicinal Chemistry Letters, 2007, 17(5):1216-1220.
doi: 10.1016/j.bmcl.2006.12.013
[53]   Wu Y, Wang Z G, Qiao X, et al. Emerging methods for efficient and extensive incorporation of non-canonical amino acids using cell-free systems. Frontiers in Bioengineering and Biotechnology, 2020, 8:863.
doi: 10.3389/fbioe.2020.00863
[54]   Agafonov D E, Huang Y W, Grote M, et al. Efficient suppression of the amber codon in E. coli in vitro translation system. FEBS Letters, 2005, 579(10):2156-2160.
pmid: 15811334
[55]   Szkaradkiewicz K, Nanninga M, Nesper-Brock M, et al. RNA aptamers directed against release factor 1 from Thermus thermophilus. FEBS Letters, 2002, 514(1):90-95.
pmid: 11904188
[56]   Lajoie M J, Rovner A J, Goodman D B, et al. Genomically recoded organisms expand biological functions. Science, 2013, 342(6156):357-360.
doi: 10.1126/science.1241459 pmid: 24136966
[57]   Seki E, Yanagisawa T, Yokoyama S. Cell-free protein synthesis for multiple site-specific incorporation of noncanonical amino acids using cell extracts from RF-1 deletion E. coli strains. Noncanonical Amino Acids, 2018, 1728:49-65. DOI: 10.1007/978-1-4939-7574-7_3.
doi: 10.1007/978-1-4939-7574-7_3
[58]   Mukai T, Hoshi H, Ohtake K, et al. Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon. Scientific Reports, 2015, 5:9699.
doi: 10.1038/srep09699
[59]   Mukai T, Hayashi A, Iraha F, et al. Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Research, 2010, 38(22):8188-8195.
doi: 10.1093/nar/gkq707
[60]   Jiang X Y, Hao X, Jing L L, et al. Recent applications of click chemistry in drug discovery. Expert Opinion on Drug Discovery, 2019, 14(8):779-789.
doi: 10.1080/17460441.2019.1614910
[61]   Li J, Chen P R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nature Chemical Biology, 2016, 12(3):129-137.
doi: 10.1038/nchembio.2024
[62]   Knall A C, Slugovc C. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chemical Society Reviews, 2013, 42(12):5131.
doi: 10.1039/c3cs60049a
[63]   Wang C L, Ikhlef D, Kahlal S, et al. Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coordination Chemistry Reviews, 2016, 316:1-20.
doi: 10.1016/j.ccr.2016.02.010
[64]   Kacprzak K, Skiera I, Piasecka M, et al. Alkaloids and isoprenoids modification by copper(I)-catalyzed huisgen 1, 3-dipolar cycloaddition (click chemistry): toward new functions and molecular architectures. Chemical Reviews, 2016, 116(10):5689-5743.
doi: 10.1021/acs.chemrev.5b00302 pmid: 27115045
[65]   Devaraj N K. The future of bioorthogonal chemistry. ACS Central Science, 2018, 4(8):952-959.
doi: 10.1021/acscentsci.8b00251 pmid: 30159392
[66]   Delaittre G, Goldmann A S, Mueller J O, et al. Efficient photochemical approaches for spatially resolved surface functionalization. Angewandte Chemie International Edition, 2015, 54(39):11388-11403.
doi: 10.1002/anie.v54.39
[67]   Jewett J C, Bertozzi C R. Cu-free click cycloaddition reactions in chemical biology. Chemical Society Reviews, 2010, 39(4):1272.
pmid: 20349533
[68]   Seitchik J L, Peeler J C, Taylor M T, et al. Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. Journal of the American Chemical Society, 2012, 134(6):2898-2901.
doi: 10.1021/ja2109745 pmid: 22283158
[69]   Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chemical Reviews, 2013, 113(7):4905-4979.
doi: 10.1021/cr200409f pmid: 23531040
[70]   Grammel M, Hang H C. Chemical reporters for biological discovery. Nature Chemical Biology, 2013, 9(8):475-484.
doi: 10.1038/nchembio.1296 pmid: 23868317
[71]   Park H S, Hohn M J, Umehara T, et al. Expanding the genetic code of Escherichia coli with phosphoserine. Science, 2011, 333(6046):1151-1154.
doi: 10.1126/science.1207203
[72]   Bannister A J, Kouzarides T. Regulation of chromatin by histone modifications. Cell Research, 2011, 21(3):381-395.
doi: 10.1038/cr.2011.22 pmid: 21321607
[73]   Neumann H, Hazen J L, Weinstein J, et al. Genetically encoding protein oxidative damage. Journal of the American Chemical Society, 2008, 130(12):4028-4033.
doi: 10.1021/ja710100d pmid: 18321101
[74]   Tsao M L, Summerer D, Ryu Y, et al. The genetic incorporation of a distance probe into proteins in Escherichia coli. Journal of the American Chemical Society, 2006, 128(14):4572-4573.
doi: 10.1021/ja058262u
[75]   Taskent-Sezgin H, Chung J, Patsalo V, et al. Interpretation of p-cyanophenylalanine fluorescence in proteins in terms of solvent exposure and contribution of side-chain quenchers: a combined fluorescence, IR and molecular dynamics study. Biochemistry, 2009, 48(38):9040-9046.
doi: 10.1021/bi900938z pmid: 19658436
[76]   Schultz K C, Supekova L, Ryu Y, et al. A genetically encoded infrared probe. Journal of the American Chemical Society, 2006, 128(43):13984-13985.
doi: 10.1021/ja0636690
[77]   Liu Q, He Q T, Lyu X X, et al. DeSiphering receptor core-induced and ligand-dependent conformational changes in arrestin via genetic encoded trimethylsilyl 1 H-NMR probe. Nature Communications, 2020, 11:4857.
doi: 10.1038/s41467-020-18433-5 pmid: 32978402
[78]   Sakamoto K, Murayama K, Oki K, et al. Genetic encoding of 3-iodo-l-tyrosine in Escherichia coli for single-wavelength anomalous dispersion phasing in protein crystallography. Structure, 2009, 17(3):335-344.
doi: 10.1016/j.str.2009.01.008 pmid: 19278648
[79]   Liu W S, Brock A, Chen S, et al. Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nature Methods, 2007, 4(3):239-244.
doi: 10.1038/nmeth1016
[80]   Hershewe J M, Warfel K F, Iyer S M, et al. Improving cell-free glycoprotein synthesis by characterizing and enriching native membrane vesicles. Nature Communications, 2021, 12:2363.
doi: 10.1038/s41467-021-22329-3 pmid: 33888690
[81]   Hershewe J, Kightlinger W, Jewett M C. Cell-free systems for accelerating glycoprotein expression and biomanufacturing. Journal of Industrial Microbiology & Biotechnology, 2020, 47(11):977-991.
[82]   Shah U H, Toneatti R, Gaitonde S A, et al. Site-specific incorporation of genetically encoded photo-crosslinkers locates the heteromeric interface of a GPCR complex in living cells. Cell Chemical Biology, 2020, 27(10): 1308-1317.e4.
doi: 10.1016/j.chembiol.2020.07.006
[83]   Welegedara A, Adams L A, Huber T, et al. Site-specific incorporation of selenocysteine by genetic encoding as a photocaged unnatural amino acid. Bioconjugate Chemistry, 2018, 29(7):2257-2264.
doi: 10.1021/acs.bioconjchem.8b00254 pmid: 29874064
[84]   Zheng Y N, Gilgenast M J, Hauc S, et al. Capturing post-translational modification-triggered protein-protein interactions using dual noncanonical amino acid mutagenesis. ACS Chemical Biology, 2018, 13(5):1137-1141.
doi: 10.1021/acschembio.8b00021
[85]   Xue G, Wang K, Zhou D L, et al. Light-induced protein degradation with photocaged PROTACs. Journal of the American Chemical Society, 2019, 141(46):18370-18374.
doi: 10.1021/jacs.9b06422
[86]   Wang J, Liu Y, Liu Y J, et al. Time-resolved protein activation by proximal decaging in living systems. Nature, 2019, 569(7757):509-513.
doi: 10.1038/s41586-019-1188-1
[87]   Huang Y J, Liu T. Therapeutic applications of genetic code expansion. Synthetic and Systems Biotechnology, 2018, 3(3):150-158.
doi: 10.1016/j.synbio.2018.09.003
[88]   Axup J Y, Bajjuri K M, Ritland M, et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. PNAS, 2012, 109(40):16101-16106.
doi: 10.1073/pnas.1211023109 pmid: 22988081
[89]   Si L L, Xu H, Zhou X Y, et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science, 2016, 354(6316):1170-1173.
doi: 10.1126/science.aah5869
[90]   Anderson J C, Wu N, Santoro S W, et al. An expanded genetic code with a functional quadruplet codon. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(20):7566-7571.
[91]   Grasso K T, Yeo M J R, Hillenbrand C M, et al. Structural robustness affects the engineerability of aminoacyl-tRNA synthetases for genetic code expansion. Biochemistry, 2021, 60(7):489-493.
doi: 10.1021/acs.biochem.1c00056
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[3] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[4] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[5] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[6] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[7] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[8] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[9] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[10] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[11] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[12] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[13] Hua-ling XIE,Dong-qiao LI,Pei-juan CHI,Yan-ping YANG. An Analysis on the Competition of Patents in Synthetic Biology[J]. China Biotechnology, 2019, 39(4): 114-123.
[14] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[15] Zhan-ku SHI,Meng-liang WEN,Jiang-yuan ZHAO,Ming-gang LI,Xiu-lin HAN. Recent Advances in Biosynthesis of 1,8-Cineole[J]. China Biotechnology, 2018, 38(11): 92-102.