Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (8): 59-68    DOI: 10.13523/j.cb.20180808
    
Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance
Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO()
Key Lab of Industrial Biotechnology of Education,School of Biotechnology,Jiangnan University,Wuxi 214122,China
Download: HTML   PDF(1636KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Streptomyces albulus M-Z18 with 1.60g/L yield of ε-Poly-L-lysine was used as initial strain to screen high-yield mutant,and the physiological and biochemical properties of high-yield mutant were compared with M-Z18.The ribosomal engineering technology was used to breed the high-yield mutant with double antibiotic resistance. A genetically stable strain named S-7, was successfully screened by streptomycin mutagenesis. The ε-Poly-L-lysine yield of S-7 was 2.03g/L. S-7 was used as initial strain to screen mutant with paromomycin,and obtained SP-14, with 2.37g/L yield of ε-Poly-L-lysine. The use of streptomycin and paromomycin to breed high-yield mutant with high antibiotic resistance is an effective method.



Key wordsFermentation engineering      Physiological and biochemical property      Double drug resistance      ε-Poly-L-lysine     
Received: 02 April 2018      Published: 11 September 2018
ZTFLH:  Q813  
Corresponding Authors: Zhong-gui MAO     E-mail: maozg@jiangnan.edu.cn
Cite this article:

Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance. China Biotechnology, 2018, 38(8): 59-68.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180808     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I8/59

Fig.1 The growth of S.albulus M-Z18 on solid plate contained with different streptomycin and paromomycin concentration on 6th day (a)A:0mg/L;B:2mg/L;C:4mg/L;D:6mg/L (b)A:0mg/L;B:6mg/L;C:9mg/L;D:10mg/L
筛选过程 突变数(M) 正突变数(P) 总菌落数(T) 突变率RM(%) 正突变率RP(%)
链霉素初筛 45 26 112 40.18 57.78
链霉素复筛 42 23 112 37.50 54.76
双重抗性初筛 19 7 61 31.15 36.84
双重抗性复筛 18 6 61 29.51 31.58
Table 1 The statistical data of mutation results
筛选方法 出发菌株 筛选浓度 平均产量(g/L) 最高产量(g/L)
筛选链霉素抗性菌株 M-Z18(1.60g/L) 链霉素:7~10mg/L 1.95±0.10 2.03±0.10
筛选双重抗性菌株 S-7(2.03g/L) 巴龙霉素:4.5~6.3mg/L 2.30±0.10 2.37±0.10
Table 2 The statistical data of screening the drug-resistant mutants experiment
Fig.2 The growth of S.albulus S-7 on solid plate contained with different paromomycin concentration on 6th day (a) 0mg/L (b) 0.9mg/L (c) 2.7mg/L (d) 4.5mg/L (e) 6.3mg/L (f) 8.1mg/L
Fig.3 Comparison of S.albulus M-Z18 and SP-14 on mycelium and spore morphology
Fig.4 Comparison of S.albulus M-Z18 and SP-14 on pellet morphology at different time during fermentation(100×)
菌株编号 出发菌 筛选抗生素浓度
(mg/L)
ε-PL产量
(g/L)
抗性(mg/L)
Str Par
M-Z18 出发菌 1.60 6.00 9.00
S-3 M-Z18 6.00(链霉素) 2.03 7.00 15.00
S-7 M-Z18 6.00(链霉素) 2.03 7.00 15.00
S-47 M-Z18 6.00(链霉素) 2.02 7.00 15.00
SP-1 S-7 10.50(巴龙霉素) 2.20 25.00 20.00
SP-14 S-7 7.50(巴龙霉素) 2.37 40.00 28.00
Table 3 The drug-resistance of the strains used in this study
Fig.5 Comparison the ε-PL production of S.albulus M-Z18 and SP-14 at different medium
Fig.6 The shake flask fermentation comparison between S.albulus M-Z18 and SP-14
Fig.7 Enzymatic activity of S.albulus M-Z18 and SP-14 during fermentation in 250ml shake flask
[1]   孟岳成, 王欣伟, 李延华 , 等. ε-聚赖氨酸对黄曲霉的作用机制初探. 食品科技, 2016 ( 12):239-244.
[1]   Meng Y C, Wang X W, Li Y H , et al. Preliminary study on the mode of action of ε-polylysin against Aspergillus flavus. Food Science and Technology, 2016(12):239-244.
[2]   石慧, 李婵娟, 张俊红 . ε-聚赖氨酸产生菌及其应用研究概述. 食品与发酵工业, 2016,42(9):263-269.
doi: 10.13995/j.cnki.11-1802/ts.201609044
[2]   Shi H, Li C J, Zhang J H . Research progress on the ε-polylysine producing strains and its application. Food and Fermentation Industries, 2016,42(9):263-269.
doi: 10.13995/j.cnki.11-1802/ts.201609044
[3]   Bankar S B, Singhal R S . Optimization of poly-ε-lysine production by Streptomyces noursei NRRL 5126. Bioresource Technology, 2010,101(21):8370-8375.
doi: 10.1016/j.biortech.2010.06.004
[4]   Zhang C, Zhang D R, He W , et al. A simple and sensitive method for screening ε-PL producing strains from soils. Journal of Shandong University (Health Sciences), 2006,44(11):1104-1107.
[5]   陈玮玮, 朱宏阳, 徐虹 . ε-聚赖氨酸高产菌株选育及分批发酵的研究. 工业微生物, 2007,37(2):28-30.
[5]   Chen W W, Zhu H Y, Xu H . Breeding of mass-producing ε-polylysine mutant and its batch fermentation. Industrial Microbiology, 2007,37(2):28-30.
[6]   Zong H, Zhan Y, Li X , et al. A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. African Journal of Microbiology Research, 2012,6(13):3154-3158.
[7]   Shima J, Hesketh A, Okamoto S , et al. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3 (2). Journal of Bacteriology, 1996,178(24):7276-7284.
doi: 10.1128/jb.178.24.7276-7284.1996
[8]   Wang G, Inaoka T, Okamoto S , et al. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrobial Agents and Chemotherapy, 2009,53(3):1019-1026.
doi: 10.1128/AAC.00388-08
[9]   Hopwood D A, Bibb M J, Chater K F , et al. Genetic manipulation of Streptomyces; A laboratory manual. Journal of Cell Biology, 1985,56(3):388-399.
doi: 10.1119/1.15669
[10]   Liu Y J, Chen X S, Zhao J J , et al. Development ofmicrotiter plate culture method for rapid screening of ε-poly-l-lysine-producing strains. Applied Biochemistry and Biotechnology, 2017,183(4):1-15.
doi: 10.1007/s12010-017-2427-2 pmid: 28160134
[11]   Itzhaki R F . Colorimetric method for estimating polylysine and polyarginine. Analytical Biochemistry, 1972,50(2):569-574.
doi: 10.1016/0003-2697(72)90067-X pmid: 4646067
[12]   Zeng X, Chen X S, Ren X D , et al. Insights into the role of glucose and glycerol as a mixed carbon source in the improvement of ε-poly-l-lysine productivity. Applied biochemistry and biotechnology, 2014,173(8):2211-2224.
doi: 10.1007/s12010-014-1026-8
[13]   田淑翠, 牛延宁, 常忠义 , 等. 常压室温等离子体(ARTP)诱变茂源链霉菌菌株. 中国生物工程杂志, 2016,36(09):47-53.
[13]   Tian S C, Niu Y N, Chang Z Y , et al. The Streptoverticillium mobaraense mutagenesis using atmospheric pressure plasma at room temperature(ARTP)method. China Biotechnology, 2016,36(09):47-53.
[14]   Okamoto-Hosoya Y, Hosaka T, Ochi K . An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3 (2). Microbiology, 2003,149(11):3299-3309.
doi: 10.1099/mic.0.26490-0
[15]   Hosaka T, Xu J, Ochi K . Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Molecular Microbiology, 2006,61(4):883-897.
doi: 10.1111/mmi.2006.61.issue-4
[16]   蒋永飞, 陈萍, 巫秋萍 . 达托霉素生产菌的激光诱变及组合抗性筛选. Advances in Microbiology, 2016,5(3):19-25.
doi: 10.12677/AMB.2016.53003
[16]   Jiang Y F, Chen P, Wu Q P . Laser mutation and combined antibiotics resistance selection to daptomycin producing strains. Advances in Microbiology, 2016,5(3):19-25.
doi: 10.12677/AMB.2016.53003
[17]   胡凯建, 吴爱祥, 王洪江 , 等. 产氨菌化学诱变及浸出低品位铜矿试验研究. 中南大学学报(自然科学版), 2016,47(10):3289-3294.
doi: 10.11817/j.issn.1672-7207.2016.10.001
[17]   Hu K J, Wu A X, Wang H H , et al. Experimental study on chemical mutation of ammonia-producing bacteria and bioleaching of low grade copper ore. Journal of Central South University(Science and Technology), 2016,47(10):3289-3294.
doi: 10.11817/j.issn.1672-7207.2016.10.001
[18]   Wang G, Inaoka T, Okamoto S , et al. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrobial Agents and Chemotherapy, 2009,53(3):1019-1026.
doi: 10.1128/AAC.00388-08
[19]   丁鑑, 张忠泽, 刘惠敏 , 等. 用扫描电镜观察链霉菌的孢子形态. 微生物学报, 1981,21(2):140-142.
[19]   Ding J, Zhang Z Z, Liu H M , et al. Spore morphology of Streptomyces viewed by scanning electron microscopy. Acta Microbiologica Sinica, 1981,21(2):140-142.
[20]   陈凝, 王永红, 储炬 , 等. 培养基成分和补料对阿维菌素发酵过程中除虫链霉菌菌丝形态的影响. 华中农业大学学报, 2007,26(4):496-501.
doi: 10.3321/j.issn:1000-2421.2007.04.016
[20]   Chen N, Wang Y H, Chu J , et al. Effect of medium composition and feeding strategy on morphology of Streptomyces avermitilis in Avermectin fermentation. Journal of Huazhong Agricultural University, 2007,26(4):496-501.
doi: 10.3321/j.issn:1000-2421.2007.04.016
[1] YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment[J]. China Biotechnology, 2021, 41(9): 48-54.
[2] QIU Jin-ge,LIU De-wu,SUN Bao-li,LI Yao-kun,GUO Yong-qing,DENG Ming,LIU Guang-bin. Research Progress on Animal Exosome Isolation Methods[J]. China Biotechnology, 2020, 40(9): 36-42.
[3] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[4] CHEN Cui-xia,WANG Xiao-long,JIANG Tai-jiao,CAO Zong-fu,LI Tian-jun,YU Lei,YU Yu-fei,CAI Rui-kun,GAO Hua-fang,Ma Xu. Platform Construction for the Early-Warning Forecast in Prevention and Control of Influenza Based on Multi-Source Heterogeneous Big-Data Mining[J]. China Biotechnology, 2020, 40(1-2): 109-115.
[5] LI Yu,ZHANG Xiao. The Experience and Enlightenment of Cell Therapy Regulation Dual-track System in Japan[J]. China Biotechnology, 2020, 40(1-2): 174-179.
[6] LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy[J]. China Biotechnology, 2019, 39(12): 50-55.
[7] Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function[J]. China Biotechnology, 2019, 39(6): 84-90.
[8] Xin LI,Zhong-li ZHAO,Xiao-tong LUO,Yang CAO,Li-chun ZHANG,Yong-sheng YU,Hai-guo JIN. Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells[J]. China Biotechnology, 2019, 39(4): 94-100.
[9] Yi SONG,Cui-yun ZHANG,Yi LI,Su-su ZHANG,Shun PAN,Yun-yun TAO,Lu-yao XU,Hua-cheng HE,Jiang WU. Preparation of a Novel Surgical Sewing Thread with Control Release of Basic Fibroblast Growth Factor Through Electrospinning Technology[J]. China Biotechnology, 2019, 39(1): 55-62.
[10] Yue-lei FAN,Jiao LU,Da-ming CHEN,Kai-yun MAO. Strategies for Stem Cell Patent Evaluation and Patent Transfer and Transformation[J]. China Biotechnology, 2019, 39(1): 99-106.
[11] ZHONG Peng-qiang,LIU Bei-zhong,YAO Juan-juan,LIU Dong-dong,YUAN Zhen,LIU Jun-mei,CHEN Min,ZHONG Liang. Knock-down of ACTL6A Promote Differentiation of NB4 Cells via the Notch1 Signaling Pathway[J]. China Biotechnology, 2018, 38(12): 1-6.
[12] Li ZHANG,Juan DING,Yu-cheng HAO,Cheng YE,Yang PU. Identification of a Marine Microalgae and Optimization of Protoplast Preparation[J]. China Biotechnology, 2018, 38(11): 42-50.
[13] Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro[J]. China Biotechnology, 2018, 38(10): 82-89.
[14] Xu-peng ZHAO,Xiao-peng ZHAO,Hao SHI,Xue-mei CHEN,Ting JIANG,Yan LIU. Establishment of High Frequency Regeneration via Leaf Explants of ‘Guichang’ Kiwifruit (Actinidia chinensis)[J]. China Biotechnology, 2018, 38(10): 48-54.
[15] Yu-rui SHENG,Bin LI,Bin WANG,Di ZUO,Lin MA,Xiao-fan REN,Le GUO,Kun-mei LIU. The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells[J]. China Biotechnology, 2018, 38(10): 38-47.