Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (1): 55-62    DOI: 10.13523/j.cb.20190107
    
Preparation of a Novel Surgical Sewing Thread with Control Release of Basic Fibroblast Growth Factor Through Electrospinning Technology
Yi SONG1,**,Cui-yun ZHANG1,Yi LI1,Su-su ZHANG1,Shun PAN1,Yun-yun TAO1,Lu-yao XU1,Hua-cheng HE2,***(),Jiang WU1,***()
1 School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
2 College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
Download: HTML   PDF(1153KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Composite materials that surgical sewing thread with basic fibroblast growth factor slow release performance were prepared, and exploring its mechanical properties and in vitro release.Methods:By means of electrospinning technology, the efficiency of packaging was optimized by studying the ratio of material composition in composite materials. Furthermore, the influence of polycaprolactone-collagen composite structure (PCL-Col) on the controllable release of bFGF was studied, to prepare the surgical sewing thread with biological activity and drug sustained release performance. Finally, the microstructure of the sewing thread was observed, and the mechanical properties and the drug loading capacity were measured.Results:The results of scanning electron microscopy (SEM) showed that the surgical sewing thread had a complete linear structure. It is proved that the sewing thread has good mechanical properties by stretching and stretching cycle experiments. Finally, enzyme linked immune sorbent assay (enzyme linked immunosorbent assay,ELISA) proved that the surgical sewing thread had a certain of drug release properties.Conclusion:By using electrospinning device and optimizing spinning parameters, PCL-Col-bFGF surgical suture composite was successfully prepared. The sewing thread meets the mechanical properties requirement of suturing and has bFGF sustained release performance.



Key wordsElectrospinning      Growth factor      Mechanical property      Slow release performance     
Received: 23 June 2018      Published: 28 February 2019
ZTFLH:  Q813  
Corresponding Authors: Yi SONG,Hua-cheng HE,Jiang WU     E-mail: hehc@wzu.ed.cn;woody870402@hotmail.com
Cite this article:

Yi SONG,Cui-yun ZHANG,Yi LI,Su-su ZHANG,Shun PAN,Yun-yun TAO,Lu-yao XU,Hua-cheng HE,Jiang WU. Preparation of a Novel Surgical Sewing Thread with Control Release of Basic Fibroblast Growth Factor Through Electrospinning Technology. China Biotechnology, 2019, 39(1): 55-62.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190107     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I1/55

Fig.1 Preparation flow chart of PCL-Col-bFGF nanofibers
组别 1 2 3 4 5 6 7
聚己内酯(g) 0.45 0.45 0.45 0.68 0.68 0.68 0.91
六氟异丙醇(ml) 6.50 6.75 7.00 6.50 6.75 7.00 6.75
水(ml) 0.50 0.25 0 0.50 0.25 0 0.25
鼠尾胶原蛋白(mg) 226.3 226.3 226.3 226.3 226.3 226.3 226.3
bFGF(μl) 113 113 113 113 113 113 113
体系均匀程度 bFGF析出 bFGF析出 体系不均匀
机械性能 + + + ++ +++ +++ -
Table 1 The design of each material ratio
静电纺丝参数 电压(kV) 距离(cm) 喷速(mm/h) 接受器转速
(r/min)
时间(min) 均匀程度 机械性能
1 6 12 1.08 300 5 + +
2 6 12 2.16 300 5 ++ +
3 6 12 3.24 300 5 + ++
4 12 12 1.08 300 5 ++ ++
5 12 12 2.16 300 5 +++ +++
6 12 12 3.24 300 5 + +
7 18 12 1.08 300 5 ++ +
8 18 12 2.16 300 5 ++ ++
9 18 12 3.24 300 5 + +
Table 2 Parameters of electrostatic spinning
Fig.2 Synthesis and characterization of bFGF particle sewing thread (a) Solution of three sets of spinning configurations (b) Three sets of sewing threads made of electrostatic spinning (c) Scanning electron microscopy of the sewing thread of the drug carrier (left 200×, right 2 000×)
Fig.3 Single stretch diagram of Surgical sewing thread (a) Single tensile stress - dependent variable diagram (b) Single tensile deformation diagram
弹性模量 (杨氏拉伸应力
5%~10%)(MPa)
最大拉伸应力(MPa) 拉伸应变(位移)
在断裂(标准)(%)
PCL 0.011 62±0.002 60 0.002 43±0.000 30 69.837 19±0.281 72
PCL+Col 0.016 20±0.000 67 0.002 83±0.000 34 66.326 75±1.854 87
PCL+Col+bFGF 0.015 71±0.000 33 0.002 31±0.000 25 69.839 13±2.025 80
Table 3 Comparison of elastic modulus, maximum tensile stress and tensile strain of three groups
Fig.4 Cyclic stretch drawing of Surgical sewing thread
第一次循环
(J/m3)
第二次循环
(J/m3)
第三次循环
(J/m3)
PCL 0.831 7 2.175 1 3.185 8
PCL+Col 0.741 2 2.094 7 2.999 3
PCL+Col+bFGF 0.857 8 2.212 1 2.999 6
Table 4 Three groups of cycle tensile loss scale
Fig.5 Hydrophilic water contact angle detection (a) The water contact angle of the pure PCL fiber (b) The water contact angle of the PCL fiber combined with Col (c) The water contact angle of the PCL fiber with addition of bFGF or Col (d) Water contact Angle statistical analysis chart of each group
时间(h) 在纯水中释放量
(ng)
在PBS溶液中释放量
(ng)
6 50.11 48.06
12 90.34 95.31
24 128.60 138.73
48 163.19 184.13
72 197.72 229.30
96 236.99 273.99
120 275.30 320.51
144 301.86 366.70
168 337.99 410.83
Table 5 The drug release detection of surgical sewing thread
[1]   Li J H, Linderman S W, Zhu C L , et al. Surgical sutures with porous sheaths for the sustained release of growth factors. Advanced Materials, 2016,28(23):4620-4624.
doi: 10.1002/adma.201506242 pmid: 4938160
[2]   Obermeier A, Schneider J, Harrasser N , et al. Viable adhered Staphylococcus aureus highly reduced on novel antimicrobial sutures using chlorhexidine and octenidine to avoid surgical site infection (SSI). PLoS One, 2018,13(1):e0190912.
doi: 10.1371/journal.pone.0190912 pmid: 29315313
[3]   Kim H, Kim B H, Huh B K , et al. Surgical suture releasing macrophage-targeted drug-loaded nanoparticles for enhanced anti-inflammatory effect. Biomaterials Science, 2017,5(8):1670-1677.
doi: 10.1039/c7bm00345e pmid: 28715515
[4]   Muller D A, Snedeker J G, Meyer D C . Two-month longitudinal study of mechanical properties of absorbable sutures used in orthopedic surgery. Journal of Orthopaedic Surgery and Research, 2016,11(1):111.
doi: 10.1186/s13018-016-0451-5 pmid: 5059988
[5]   Moon S, Gil M, Lee K J . Syringeless electrospinning toward versatile fabrication of nanofiber web. Scientific Reports, 2017,7:41424.
doi: 10.1038/srep41424
[6]   McClellan P, Landis W J . Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering. Bioresearch Open Access, 2016,5(1):212-227.
doi: 10.1089/biores.2016.0022 pmid: 5003012
[7]   Scaffaro R, Lopresti F, Botta L . Preparation, characterization and hydrolytic degradation of PLA/PCL co-mingled nanofibrous mats prepared via dual-jet electrospinning. European Polymer Journal, 2017,96:266-277.
doi: 10.1016/j.eurpolymj.2017.09.016
[8]   Abdian N, Ghasemi-Dehkordi P, Hashemzadeh-Chaleshtori M , et al. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF). Cell Tissue Bank, 2015,16(4):487-495.
doi: 10.1007/s10561-015-9494-9 pmid: 25605061
[9]   Han U, Park H H, KimY J , et al. Efficient encapsulation and sustained release of basic fibroblast growth factor in nanofilm: extension of the feeding cycle of human induced pluripotent stem cell culture. ACS Applied Materials & Interfaces, 2017,9(30):25087-25097.
doi: 10.1021/acsami.7b05519 pmid: 28686012
[10]   Palama I E, Arcadio V, D’Amone S , et al. Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. Scientific Reports, 2017,7(1):12672.
doi: 10.1038/s41598-017-12824-3 pmid: 28978922
[11]   Luo X S, Guo Z Z, He P , et al. Study on structure, mechanical property and cell cytocompatibility of electrospun collagen nanofibers crosslinked by common agents. International Journal of Biological Macromolecules, 2018,113:476-486.
doi: 10.1016/j.ijbiomac.2018.01.179 pmid: 29391224
[12]   Shi C Y, Chen W, Chen B , et al. Bladder regeneration in a canine model using a bladder acellular matrix loaded with a collagen-binding bFGF. Biomaterials Science, 2017,5(12):2427-2436.
doi: 10.1039/C7BM00806F
[13]   Qian Y Z, Chen H B, Xu Y , et al. The preosteoblast response of electrospinning PLGA/PCL nanofibers: effects of biomimetic architecture and collagen I. International Journal of Nanomedicie, 2016,11:4157-4171.
doi: 10.2147/IJN.S110577 pmid: 5003594
[14]   Kuchi C, Harish G S, Reddy P S . Effect of polymer concentration, needle diameter and annealing temperature on TiO2-PVP composite nanofibers synthesized by electrospinning technique. Ceramics International, 2018,44:5266-5272.
doi: 10.1016/j.ceramint.2017.12.138
[15]   Xu H L, Chen P P, ZhuGe D L , et al. Liposomes with silk fibroin hydrogel core to stabilize bFGF and promote the wound healing of mice with deep second-degree scald. Advanced Healthcare Materials, 2017,6(19):1700344.
doi: 10.1002/adhm.201700344 pmid: 28661050
[16]   Drosou C, Krokida M, Biliaderis C G . Composite pullulan-whey protein nanofibers made by electrospinning: Impact of process parameters on fiber morphology and physical properties. Food Hydrocolloids, 2018,77:726-735.
doi: 10.1016/j.foodhyd.2017.11.014
[17]   Bideau B, Bras J, Saini S , et al. Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Materials Science and Engineering C, 2016,69:977-984.
doi: 10.1016/j.msec.2016.08.005
[18]   Dohmen J, Grunewald N, Otto F , et al. Micro structures in thin coating layers: micro structure evolution and macroscopic contact angle. Mathematics - Key Technology for the Future, 2008,XVIII(357):75-97.
doi: 10.1007/978-3-540-77203-3_7
[19]   Yang Y, Xia T, Zhi W , et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials, 2011 , 32(18) : 4243-4254.
doi: 10.1016/j.biomaterials.2011.02.042 pmid: 21402405
[20]   Chen H L, Blitterswijk C V, Mota C , et al. Direct writing electrospinning of scaffolds with multidimensional fiber architecture for hierarchical tissue engineering. Acs Applied Materials & Interfaces, 2017,9(44):38187-38200.
doi: 10.1021/acsami.7b07151 pmid: 5682611
[21]   Buzgo M, Filova E, Staffa A M , et al. Needleless emulsion electrospinning for the regulated delivery of susceptible proteins. Journal of Tissue Engineering and Regenerative Medicine, 2017,12(3) : 583-597.
doi: 10.1002/term.2474 pmid: 28508471
[22]   Kim Y S, Gulfam M, Lowe T L . Thermoresponsive- co-biodegradable linear-dendritic nanoparticles for sustained release of nerve growth factor to promote neurite outgrowth. Molecular Pharmaceutics, 2018,15(4):1467-1475.
doi: 10.1021/acs.molpharmaceut.7b01044
[1] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[2] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[3] Xin GAO,Pan-jian WEI,Zhuo-hong YAN,Ling YI,Xiao-jue WANG,Bin YANG,Hong-tao ZHANG. Cloning and Expression of Single Chain Antibody Against Human EGFR[J]. China Biotechnology, 2018, 38(5): 73-78.
[4] Si-teng DUAN,Guang-ran LI,Yi-yong MA,Yu-jia QIU,Yu LI,Wei WANG. Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF[J]. China Biotechnology, 2018, 38(4): 70-77.
[5] Ya-nan LIU,Li LU,Xue-xi WANG,Yong-jie WU,Xia LIU. Research Pogress of Adipose Derived Stem Cells on Nerve Injury Repair[J]. China Biotechnology, 2018, 38(3): 70-75.
[6] ZHENG Jie, JIANG Chao, LI Xiao-kun, TIAN Hai-shan. The Progression of Fibroblast Growth Factor 6[J]. China Biotechnology, 2017, 37(4): 110-114.
[7] CHEN Kun, CAO Xue-wei, ZHANG Qin, ZHAO Jian, WANG Fu-jun. Application of EGF-like Growth Factor-derived Tumor-homing Peptide for Antineoplastic Protein[J]. China Biotechnology, 2017, 37(3): 1-9.
[8] GONG Wei-yue, TIAN Hai-shan, LI Xiao-kun, JIANG Chao. Fibroblast Growth Factor and Bone Related Diseases[J]. China Biotechnology, 2016, 36(8): 99-104.
[9] DENG Chun-pin, YANG Bo, MEI Xiong, ZHENG Zan-shun, QU Wei. Measurement and Analysis of Recombinant Basic Fibroblast Growth Factor's Free Sulfhydryl[J]. China Biotechnology, 2016, 36(6): 76-80.
[10] WANG Xiao-hua, LI Yu-ting, LIU Ya-wei, GUI Jin-qiu, ZHOU Xiao-hang, YUAN Xiao-huan, CHU Yan-hui, LIU Hai-feng. Effects of Human Truncated Variant of Hepatocyte Growth Factor (tvNK1) on Carbon Tetrachloride-induced Liver Fibrosis in Rat[J]. China Biotechnology, 2016, 36(6): 18-23.
[11] LI Rui, CAI Ping-tao, YE Li-bing, ZHANG Hong-yu, XIAO Jian. Biomaterial of [PEAD: Heparin: NGF] Coacervate Promote Function Recovery of Sciatic Nerve Regeneration in Rats[J]. China Biotechnology, 2016, 36(2): 68-72.
[12] YI Shan-yong, YANG Jing, GUAN Li-li, WANG Yan-fang, HUANG Jian, WANG Li-yong, LI Hai-yan, LI Xiao-kun, JIANG Chao. Research Progresses On The Fibroblast Growth Factor 9[J]. China Biotechnology, 2015, 35(7): 94-101.
[13] ZHANG Chao, XIANG Li-na, CHEN De-pei, LÜ Xin-xin, ZHAO Yi-tong, WANG Lu-yao, XIAO Jian, ZHANG Hong-yu. The Development of the Study on bFGF Promote the Nerve Injury Repair[J]. China Biotechnology, 2015, 35(6): 75-79.
[14] AI Jun, JIANG Chao, LIU Min, WANG Xiao-yan, TIAN Hai-shan, LI Xiao-kun. Two Oleosins Flanking the KGF-2 Improve the Expression Level of KGF-2 in Arabidopsis thaliana and Its Activity Analysis[J]. China Biotechnology, 2015, 35(1): 21-26.
[15] PANG Shi-feng, JIANG Chao, LI Wen-rong, FENG Zhi-guo, LIU Min, CHU Sheng-hui, LI Xiao-kun, ZHENG Ke-qin. Cloning of Soybean Oleosin and EGF Fusion Gene and Expression in Safflower Seeds[J]. China Biotechnology, 2014, 34(4): 71-77.