Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (9): 36-42    DOI: 10.13523/j.cb.2004051
    
Research Progress on Animal Exosome Isolation Methods
QIU Jin-ge,LIU De-wu,SUN Bao-li,LI Yao-kun,GUO Yong-qing,DENG Ming,LIU Guang-bin()
College of Animal Science, South China Agricultural University, Guangzhou 510642, China
Download: HTML   PDF(869KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Exosomes, widely existing in various biological fluids, are one type of extracellular vesicles secreted by cells and one of carriers of cell-cell communication. The functional materials carried by exosomes, such as nucleic acids, proteins and lipids, are considered as biomarkers for animal physiological diagnosis and as communication carriers for animal physiological states regulation or diseases treatment. Exosomes have been extensively studied as their great development potential. The establishment of mature, stable, convenient and fast exosome isolation methods is a prerequisite for ensuring the smooth progress of exosome related research. Summarized current main methods of animal exosome isolation and compared the characteristics of different isolation methods, the following provides methodological and theoretical references for the further development of related technologies and subsequent animal exosome research.



Key wordsExosome      Isolation method      Biomarker     
Received: 26 April 2020      Published: 12 October 2020
ZTFLH:  Q813  
Corresponding Authors: Guang-bin LIU     E-mail: gbliu@scau.edu.cn
Cite this article:

QIU Jin-ge,LIU De-wu,SUN Bao-li,LI Yao-kun,GUO Yong-qing,DENG Ming,LIU Guang-bin. Research Progress on Animal Exosome Isolation Methods. China Biotechnology, 2020, 40(9): 36-42.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2004051     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I9/36

Isolation methods Advantages Disadvantages References
基于超速离心的外泌体分离 差速离心操作简单,密度梯度分离的外泌体完整性好,污染程度小 设备昂贵,耗时,差速离心会破坏外泌体结构,密度梯度离心操作难掌握 [24-28, 31, 37-39, 48]
基于免疫亲和力的外泌体分离 高特异性分离外泌体纯度高,分离精准 样本容量小,产量低,受制于抗体的开发程度,抗体成本高,初始样品需预处理 [26-27, 31, 34]
外泌体沉淀分离 样本容量大,操作简单,外泌体产量高 化学分离污染程度大,沉淀需过夜孵化,初始样品需预处理 [24, 31, 34, 37-40, 46]
基于分子尺寸的外泌体分离 分离快速,物理分离污染程度小 过滤系统容易堵塞,造成产量低,初始样品需预处理 [24-25, 31, 34, 37, 46-48]
基于微流体的外泌体分离 分离快速,便携,自动化集成化程度高 样品容量小,未大量投入使用 [58-59]
Table 1 Comparison of exosome isolation methods
[1]   Wolf P. The nature and significance of platelet products in human plasma. British Journal of Haematology, 1967,13(3):269-288.
doi: 10.1111/j.1365-2141.1967.tb08741.x
[2]   Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. The Journal of Cell Biology, 1983,97(2):329-339.
[3]   Pan B T, Teng K, Wu C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. The Journal of Cell Biology, 1985,101(3):942-948.
pmid: 2993317
[4]   Johnstone R M, Adam M, Hammond J, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). Journal of Biological Chemistry, 1987,262(19):9412-9420.
pmid: 3597417
[5]   Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 2007,9(6):654-659.
[6]   Skog J, Würdinger T, Van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 2008,10(12):1470-1476.
[7]   Yáñez-Mó M, Siljander P R M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015,4(1):27066.
[8]   Koh Y, Peiris H, Vaswani K, et al. Characterization of exosomes from body fluids of dairy cows. Journal of Animal Science, 2017,95(9):3893-3904.
pmid: 28992005
[9]   Smith Z J, Lee C, Rojalin T, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. Journal of Extracellular Vesicles, 2015,4(1):28533.
[10]   Zaborowski M P, Balaj L, Breakefield X O, et al. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience, 2015,65(8):783-797.
pmid: 26955082
[11]   Bebelman M P, Smit M J, Pegtel D M, et al. Biogenesis and function of extracellular vesicles in cancer. Pharmacology Therapeutics, 2018,188 : 1-11.
[12]   Hessvik N P, Llorente A. Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 2018,75(2):193-208.
pmid: 28733901
[13]   Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Current Opinion in Cell Biology, 2014,29 : 116-125.
pmid: 24959705
[14]   Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell Developmental Biology, 2014,30:255-289.
pmid: 25288114
[15]   Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci, 2013,126(24):5553-5565.
[16]   Henne W M, Stenmark H, Emr S D. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harbor Perspectives in Biology, 2013,5(9):a016766.
pmid: 24003212
[17]   Chairoungdua A, Smith D L, Pochard P, et al. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. Journal of Cell Biology, 2010,190(6):1079-1091.
pmid: 20837771
[18]   Hurwitz S N, Conlon M M, Rider M A, et al. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. Journal of Extracellular Vesicles, 2016,5(1):31295.
[19]   Bracht J W P, Mayo-de-las-Casas C, Berenguer J, et al. The present and future of liquid biopsies in non-small cell lung cancer: combining four biosources for diagnosis, prognosis, prediction, and disease monitoring. Current Oncology Reports, 2018,20(9):70.
doi: 10.1007/s11912-018-0720-z
[20]   Melo S A, Luecke L B, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature Cell Biology, 2015,523(7559):177-182.
[21]   Sandfeld-Paulsen B, Aggerholm-Pedersen N, Baek R, et al. Exosomal proteins as prognostic biomarkers in non‐small cell lung cancer. Molecular Oncology, 2016,10(10):1595-1602.
doi: 10.1016/j.molonc.2016.10.003 pmid: 27856179
[22]   Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 2006,30(1):3-22.
[23]   Zarovni N, Corrado A, Guazzi P, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods, 2015,87 : 46-58.
doi: 10.1016/j.ymeth.2015.05.028 pmid: 26044649
[24]   Lobb R J, Becker M, Wen Wen S, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles, 2015,4(1):27031.
[25]   Baranyai T, Herczeg K, Onódi Z, et al. Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One, 2015,10(12):e0145686.
doi: 10.1371/journal.pone.0145686 pmid: 26690353
[26]   Jeppesen D K, Fenix A M, Franklin J L, et al. Reassessment of exosome composition. Cell, 2019,177(2):428-445.
pmid: 30951670
[27]   Greening D W, Xu R, Ji H, et al. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. New York: Humana Press, 2015:179-209.
[28]   Yamashita T, Takahashi Y, Nishikawa M, et al. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. European Journal of Pharmaceutics and Biopharmaceutics, 2016,98 : 1-8.
pmid: 26545617
[29]   Li P, Kaslan M, Lee S H, et al. Progress in exosome isolation techniques. Theranostics, 2017,7(3):789-804.
pmid: 28255367
[30]   Doyle L M, Wang M Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019,8(7):727.
[31]   Patel G K, Khan M A, Zubair H, et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scientific Reports, 2019,9(1):1-10.
pmid: 30626917
[32]   Crescitelli R, Lässer C, Szabó T G, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. Journal of Extracellular Vesicles, 2013,2(1):20677.
[33]   Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences, 2016,113(8):E968-E977.
[34]   Macías M, Rebmann V, Mateos B, et al. Comparison of six commercial serum exosome isolation methods suitable for clinical laboratories. Effect in cytokine analysis. Clinical Chemistry Laboratory Medicine, 2019,57(10):1539-1545.
pmid: 30990781
[35]   Lewis G D, Metcalf T G. Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Appl Environ Microbiol, 1988,54(8):1983-1988.
doi: 10.1128/AEM.54.8.1983-1988.1988 pmid: 2845860
[36]   Zeringer E, Barta T, Li M, et al. Strategies for isolation of exosomes. Cold Spring Harbor Protocols, 2015,2015(4):pdb.top074476.
pmid: 25655493
[37]   Alvarez M L, Khosroheidari M, Ravi R K, et al. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney International, 2012,82(9):1024-1032.
pmid: 22785172
[38]   Helwa I, Cai J, Drewry M D, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One, 2017,12(1):e0170628.
[39]   Tang Y T, Huang Y Y, Zheng L, et al. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. International Journal of Molecular Medicine, 2017,40(3):834-844.
[40]   Ding M, Wang C, Lu X, et al. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Analytical Bioanalytical Chemistry, 2018,410(16):3805-3814.
pmid: 29671027
[41]   Zhang M, Jin K, Gao L, et al. Methods and technologies for exosome isolation and characterization. Small Methods, 2018,2(9):1800021.
[42]   Cheruvanky A, Zhou H, Pisitkun T, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. American Journal of Physiology-Renal Physiology, 2007,292(5):F1657-F1661.
[43]   Heinemann M L, Ilmer M, Silva L P, et al. Benchtop isolation and characterization of functional exosomes by sequential filtration. Journal of Chromatography A, 2014,1371 : 125-135.
pmid: 25458527
[44]   Liu F, Vermesh O, Mani V, et al. The exosome total isolation chip. ACS Nano, 2017,11(11):10712-10723.
doi: 10.1021/acsnano.7b04878 pmid: 29090896
[45]   Feng Y, Huang W, Wani M, et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One, 2014,9(2):e88685.
pmid: 24558412
[46]   Martins T S, Catita J, Rosa I M, et al. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One, 2018,13(6 ): e0198820.
pmid: 29889903
[47]   Stranska R, Gysbrechts L, Wouters J, et al. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. Journal of Translational Medicine, 2018,16(1):1.
pmid: 29316942
[48]   Neerukonda S N, Egan N A, Patria J, et al. Comparison of exosomes purified via ultracentrifugation (UC) and total exosome isolation (TEI) reagent from the serum of Marek’s disease virus (MDV)-vaccinated and tumor-bearing chickens. Journal of Virological Methods, 2019,263 : 1-9.
doi: 10.1016/j.jviromet.2018.10.004 pmid: 30316797
[49]   Musante L, Tataruch D, Gu D, et al. A simplified method to recover urinary vesicles for clinical applications, and sample banking. Scientific Reports, 2014,4 : 7532.
pmid: 25532487
[50]   廖泽荣, 李永瑞, 古乐, 等. 基于微流控芯片的细胞外囊泡分离技术研究进展. 色谱, 2019,37(4):343-347.
[50]   Liao Z R, Li Y R, Gu L, et al. Advances in microfluidic chip-based extracellular vesicle separation. Chinese Journal of Chromatography, 2019,37(4):343-347.
[51]   Chen C, Skog J, Hsu C H, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab on a Chip, 2010,10(4):505-511.
pmid: 20126692
[52]   Davies R T, Kim J, Jang S C, et al. Microfluidic filtration system to isolate extracellular vesicles from blood. Lab on a Chip, 2012,12(24):5202-5210.
doi: 10.1039/c2lc41006k pmid: 23111789
[53]   Wang Z, Wu H-j, Fine D, et al. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab on a Chip, 2013,13(15):2879-2882.
pmid: 23743667
[54]   Lee K, Shao H, Weissleder R, et al. Acoustic purification of extracellular microvesicles. ACS Nano, 2015,9(3):2321-2327.
[55]   Wunsch B H, Smith J T, Gifford S M, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nature Nanotechnology, 2016,11(11):936.
pmid: 27479757
[56]   Liu C, Guo J, Tian F, et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano, 2017,11(7):6968-6976.
doi: 10.1021/acsnano.7b02277 pmid: 28679045
[57]   Kang D, Oh S, Ahn S M, et al. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. Journal of Proteome Research, 2008,7(8):3475-3480.
doi: 10.1021/pr800225z pmid: 18570454
[58]   Liga A, Vliegenthart A, Oosthuyzen W, et al. Exosome isolation: a microfluidic road-map. Lab on a Chip, 2015,15(11):2388-2394.
doi: 10.1039/c5lc00240k pmid: 25940789
[59]   Contreras-Naranjo J C, Wu H J, Ugaz V M. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab on a Chip, 2017,17(21):3558-3577.
doi: 10.1039/c7lc00592j pmid: 28832692
[1] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[2] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[3] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[4] WU You,XIN Lin. New Drug Delivery System: Delivery of Exosomes as Drug Carriers[J]. China Biotechnology, 2020, 40(9): 28-35.
[5] MAO Hui,LV Yu-hua,ZHU Li-hui,LIN Yue-xia,LIAO Rong-rong. The Role of Exosomes in the Diagnosis and Treatment of Viral Infection[J]. China Biotechnology, 2020, 40(3): 104-110.
[6] WU Jia-han,JIANG Lin,CHEN Ting,SUN Jia-jie,ZHANG Yong-liang,XI Qian-yun. Research on the Interaction between Adipose Tissue Exosomes and Other Tissues[J]. China Biotechnology, 2020, 40(3): 111-116.
[7] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[8] LIU Yan,DAI Peng,ZHU Yun-feng. Research Progress of Exosome as Tumor Marker[J]. China Biotechnology, 2019, 39(8): 74-79.
[9] Yan LIU,Peng DAI,Yun-feng ZHU. Research Progress of Relationship between Exosomes and Autophagosomes[J]. China Biotechnology, 2019, 39(6): 78-83.
[10] Zhen-hu LI,Yun-fei WU,Ying PAN,Zhao-xiang REN,Xiang-chao GU,Liang TANG,Xin-zhong WANG,Juan ZHANG. The Development of Immuno-oncology Therapy and the Biomarker Research[J]. China Biotechnology, 2019, 39(2): 38-48.
[11] Xi-wen JIANG,Zi-wei DONG,Yue LIU,Xiao-ya ZHU. Reserch Progress on Biomarkers and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 74-81.
[12] WU Sheng-xing, LI Yan, ZHANG Hai-yan, LIU Yang, LAI Qiong, YANG Ming. The Prospect of Induction of Pluripotent Stem Cell Technology in Drug Research and Development[J]. China Biotechnology, 2017, 37(11): 116-122.
[13] AN Long-fei, JIN Long, SUN Feng-liang, LI Kai, YAN Cheng-zhi, QIN Jun, ZHANG Pu-min, WU Chen, CHEN Huan. The character of cervical cancer patients and healthy women in experiment group and validation group[J]. China Biotechnology, 2016, 36(9): 1-10.
[14] Rachael Ritchie, Marie-Ange Baucher. Policy Issues for the Development and Use of Biomarkers in Health[J]. China Biotechnology, 2014, 34(1): 101-126.
[15] YUAN Xiao-ning, ZHU Yun-feng. Exosome and Its Roles in Regulation of Tumor Cell[J]. China Biotechnology, 2013, 33(8): 111-117.