Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (9): 48-54    DOI: 10.13523/j.cb.2103070
    
Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment
YANG Liu1,2,MOU Hao1,2,XU Guo-yang1,2,BAI Yun-chuan3,YU Yuan-di1,2,***()
1 Chongqing Academy of Animal Sciences, Chongqing 402460, China
2 Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing 402460, China
3 Chongqing Youyang Tujia and Miao Autonomous County Animal Husbandry Development Center, Chongqing 409812, China
Download: HTML   PDF(1252KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To screen out the suitable host cells for recombinant goat pox virus (GPV) expressing LacZ gene.Methods:The baby hamster syrian kidney cells (BHK21), sheep kidney cells (SK) and lamb testis cells (LT) commonly used for the culture of GPV were cultured to a single layer in the same cell plate. The monolayer cells were then cultured in the medium containing X-gal, and the blue color of each cell well in the environment of X-gal was observed. RNA was extracted from the monolayer cells and RT-PCR of LacZ gene was performed. PCR products were recovered, ligation vectors were transformed into E. coli (DH5α), and positive clones were selected for sequencing analysis. The β-galactosidase produced by each cell was tested when the monolayer cells were cultured for 72 h.Results:As the culture time prolonged, the gel color of BHK21 and LT wells in solid medium turned blue and deepened gradually. Blue spots were observed under microscope. But SK cells, blank and medium X-gal free did not change color, and no blue spots were observed under microscope. Besides the adherent cells in liquid culture containing X-gal gradually showed detachment, the culture medium was not blue. The electrophoresis band of the RT-PCR product was consistent with the expected molecular weight. The analysis of sequenced results showed that the DNA sequence similarity between the target DNA and the LacZ gene reached 100%, indicating that the 3 cells all have LacZ gene transcripts. The results of β-galactosidase assay showed 3 cells expressed this enzyme, and their production enzyme ability was BHK21>LT>SK, especially SK cells produced very low amount of β-galactosidase.Conclusion:The SK cell screened by the color difference method is suitable for culturing recombinant GPV expressing LacZ gene. The results can provide some reference value for the development of new GPV vaccine.



Key wordsLacZ gene      Goatpox virus      Color difference method      SK cell     
Received: 29 March 2021      Published: 30 September 2021
ZTFLH:  Q813  
Corresponding Authors: Yuan-di YU     E-mail: yuyuandi@126.com
Cite this article:

YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment. China Biotechnology, 2021, 41(9): 48-54.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2103070     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I9/48

Fig.1 The color development results of immobilized cell BHK21, SK, LT cultured at 0 h, 24 h, 48 h and 72 h
Fig.2 The color and cell adhensions of BHK21, SK, LT in liquid cultured at 24 h
Fig.3 Microscopic observation results of immobilized cell BHK21, SK, LT and blank group cultured at 72 h Arrows-cell blue spots
Fig.4 Electropherogram of PCR product M2000: DNA marker2000; 1: PCR amplified fragment of LacZ gene in recombinant positive plasmid; 2, 3, 4: RT-PCR amplified fragment of BHK21, SK, LT cell RNA as templates
Fig.5 The test results of β-galactosidase production on each cell cultured for 72 h Con: DMEN culture;*,** and *** represent P<0.05, P<0.01 and P<0.001, respectively
[1]   Reznikoff W S, Miller J H, Scaife J G, et al. A mechanism for repressor action. Journal of Molecular Biology, 1969, 43(1):201-213.
pmid: 4897791
[2]   何维, 吴鹤龄. 广泛用于基因表达调控研究中的LacZ基因. 遗传, 1995, 17(5):45-46.
[2]   He W, Wu H L. LacZ gene widely applied in the research of gene expression and regulation. Hereditas(Beijing), 1995, 17(5):45-46.
[3]   刘蕾, 李永霞, 刘金泽, 等. 一种lacZ报告基因T载体的构建及其在沙门氏菌鞭毛主调控基因flhDC表达活性测定中的应用. 中国预防兽医学报, 2017, 39(9):711-716.
[3]   Liu L, Li Y X, Liu J Z, et al. Construction of T-vector with lacZ reporter gene and its application in the expression activity of flagellar master regulatory gene flhDC in Salmonella. Chinese Journal of Preventive Veterinary Medicine, 2017, 39(9):711-716.
[4]   张倩, 王震, 张辉, 等. 表达羊传染性脓疱病毒F1L基因的重组山羊痘病毒的构建与特性鉴定. 微生物学报, 2014, 54(7):813-820.
pmid: 25252463
[4]   Zhang Q, Wang Z, Zhang H, et al. Characterization of a recombinant Goatpox virus expressing Orfv F1L gene. Acta Microbiologica Sinica, 2014, 54(7):813-820.
pmid: 25252463
[5]   方敬敬, 唐慧. 纯化痘病毒筛选的常用方法. 中华临床医师杂志(电子版), 2019, 13(9):680-683.
[5]   Fang J J, Tang H. Commonly used methods for screening and purifying vaccinia virus. Chinese Journal of Clinicians (Electronic Edition), 2019, 13(9):680-683.
[6]   海岗, 韩宗玺, 邵昱昊, 等. 共表达口蹄疫病毒vp1基因和山羊IFN-γ基因的重组山羊痘病毒的构建. 中国预防兽医学报, 2008, 30(5):334-338.
[6]   Hai G, Han Z X, Shao Y H, et al. Construction of recombinant capripox virus co-expressing FMDV vp1 and goat IFN-γ. Chinese Journal of Preventive Veterinary Medicine, 2008, 30(5):334-338.
[7]   董艺凝, 陈海琴, 张灏, 等. β-半乳糖苷酶的研究现状与进展. 食品与生物技术学报, 2018, 37(4):337-343.
[7]   Dong Y N, Chen H Q, Zhang H, et al. Research status and progress on β-galactosidase. Journal of Food Science and Biotechnology, 2018, 37(4):337-343.
[8]   Liu Y, Wu Z F, Zeng X X, et al. A novel cold-adapted phospho-beta-galactosidase from Bacillus velezensis and its potential application for lactose hydrolysis in milk. International Journal of Biological Macromolecules, 2021, 166:760-770.
doi: 10.1016/j.ijbiomac.2020.10.233
[9]   Intanon M, Arreola S L, Pham N H, et al. Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk. FEMS Microbiology Letters, 2014, 353(2):89-97.
doi: 10.1111/fml.2014.353.issue-2
[10]   丁玉春, 林玲, 罗林, 等. 重庆地区山羊痘病毒分离鉴定及其动物模型构建. 中国草食动物科学, 2018, 38(3):39-42.
[10]   Ding Y C, Lin L, Luo L, et al. Isolation & identification of Capripoxvirus in Chongqing and the construction of animal model. China Herbivore Science, 2018, 38(3):39-42.
[11]   唐娜, 孙翠平, 王文秀, 等. 山羊痘病毒AV41株在3种原代细胞上的培养特性比较. 动物医学进展, 2012, 33(11):41-44.
[11]   Tang N, Sun C P, Wang W X, et al. Comparative analysis of goatpox virus AV41 strain cultured in three different primary cells. Progress in Veterinary Medicine, 2012, 33(11):41-44.
[12]   周建胜, 马慧玲, 郭庆山. 绵羊睾丸原代细胞培养及接种羊痘弱毒后的病变观察. 中国兽医科技, 2004, 34(9):73-76.
[12]   Zhou J S, Ma H L, Guo Q S. Culturing of ovine testicular cells and observation of pathological changes of the cells innoculated with attenuated sheep pox virus. Chinese Journal of Veterinary Science and Technology, 2004, 34(9):73-76.
[13]   王绍华, 江焕贤. 山羊痘弱毒疫苗的研究. 中国农业科学, 1985, 18(6):77-82, 98.
[13]   Wang S H, Jiang H X. Studies on the attenuated goat pox virus vaccine. Scientia Agricultura Sinica, 1985, 18(6):77-82, 98.
[14]   中国兽药典委员会. 中华人民共和国兽药典三部(2010年版). 北京: 中国农业出版社, 2021:61-62.
[14]   Chinese Veterinary Pharmacopoeia Committee. The third part of the veterinary pharmacopoeia of the people's Republic of China(2010 edition), Beijing: China Agricultural Press, 2021: 61-62.
[15]   Katiyar M C, Soman J P, 郑征. 山羊痘病毒在山羊肾细胞培养中适应性的研究. 国外兽医学畜禽疾病, 1988, 9(3):32-35.
[15]   Katiyar M C, Soman J P, Zheng Z. Study on the adaptability of goat pox virus in goat kidney cell culture. Progress in Veterinary Medicine, 1988, 9(3):32-35.
[16]   Hosamani M, Nandi S, Mondal B, et al. A Vero cell-attenuated Goatpox virus provides protection against virulent virus challenge. Acta Virologica, 2004, 48(1):15-21.
pmid: 15230470
[17]   Liu F X, Li L, Wang Z L. An improved system for constructing marker-free recombinant goatpox viruses to express foreign proteins. Research in Veterinary Science, 2019, 126:124-126.
doi: 10.1016/j.rvsc.2019.08.017
[18]   Sun Z H, Liu L Z, Zhang H, et al. Expression and functional analysis of Brucella outer membrane protein 25 in recombinant goat pox virus. Molecular Medicine Reports, 2019, 19(3):2323-2329.
[19]   王芳, 刘胜旺, 邵昱昊, 等. 表达LacZ基因的重组山羊痘病毒的构建及其生物学特征研究. 中国预防兽医学报, 2007, 29(9):655-660.
[19]   Wang F, Liu S W, Shao Y H, et al. Biological charateristics of recombinant goat pox virus expressing β-galactosidase gene. Chinese Journal of Preventive Veterinary Medicine, 2007, 29(9):655-660.
[20]   李瑞芳. 羊传染性脓疱病毒的分离鉴定及其保护性抗原基因重组山羊痘病毒载体的构建. 石河子:石河子大学, 2012.
[20]   Li R F. Isolation and identification of Orf virus and construction of recombinant goatpox virus expressing protective antigen gene of Orf virus. Shihezi: Shihezi University, 2012.
[21]   胡钦朝, 姜徕博, 彭建敏, 等. 利用荧光染料CFSE分选衰老细胞的探究. 口腔生物医学, 2020, 11(2):81-85.
[21]   Hu Q C, Jiang L B, Peng J M, et al. Study on sorting senescent cells by CFSE. Oral Biomedicine, 2020, 11(2):81-85.
[22]   潘静, 陈金铃, 朱丹丹, 等. 细胞衰老机制的研究新进展. 中国病原生物学杂志, 2015, 10(7):672-675.
[22]   Pan J, Chen J L, Zhu D D, et al. Advances in study of the mechanisms of cellular senescence. Journal of Pathogen Biology, 2015, 10(7):672-675.
[23]   赵欢, 周斌. 细胞衰老研究现状. 中国细胞生物学学报, 2017, 39(6):687-694.
[23]   Zhao H, Zhou B. Current research status of cellular senescence. Chinese Journal of Cell Biology, 2017, 39(6):687-694.
[1] QIU Jin-ge,LIU De-wu,SUN Bao-li,LI Yao-kun,GUO Yong-qing,DENG Ming,LIU Guang-bin. Research Progress on Animal Exosome Isolation Methods[J]. China Biotechnology, 2020, 40(9): 36-42.
[2] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[3] LI Yu,ZHANG Xiao. The Experience and Enlightenment of Cell Therapy Regulation Dual-track System in Japan[J]. China Biotechnology, 2020, 40(1-2): 174-179.
[4] CHEN Cui-xia,WANG Xiao-long,JIANG Tai-jiao,CAO Zong-fu,LI Tian-jun,YU Lei,YU Yu-fei,CAI Rui-kun,GAO Hua-fang,Ma Xu. Platform Construction for the Early-Warning Forecast in Prevention and Control of Influenza Based on Multi-Source Heterogeneous Big-Data Mining[J]. China Biotechnology, 2020, 40(1-2): 109-115.
[5] LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy[J]. China Biotechnology, 2019, 39(12): 50-55.
[6] Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function[J]. China Biotechnology, 2019, 39(6): 84-90.
[7] Xin LI,Zhong-li ZHAO,Xiao-tong LUO,Yang CAO,Li-chun ZHANG,Yong-sheng YU,Hai-guo JIN. Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells[J]. China Biotechnology, 2019, 39(4): 94-100.
[8] Yue-lei FAN,Jiao LU,Da-ming CHEN,Kai-yun MAO. Strategies for Stem Cell Patent Evaluation and Patent Transfer and Transformation[J]. China Biotechnology, 2019, 39(1): 99-106.
[9] Yi SONG,Cui-yun ZHANG,Yi LI,Su-su ZHANG,Shun PAN,Yun-yun TAO,Lu-yao XU,Hua-cheng HE,Jiang WU. Preparation of a Novel Surgical Sewing Thread with Control Release of Basic Fibroblast Growth Factor Through Electrospinning Technology[J]. China Biotechnology, 2019, 39(1): 55-62.
[10] ZHONG Peng-qiang,LIU Bei-zhong,YAO Juan-juan,LIU Dong-dong,YUAN Zhen,LIU Jun-mei,CHEN Min,ZHONG Liang. Knock-down of ACTL6A Promote Differentiation of NB4 Cells via the Notch1 Signaling Pathway[J]. China Biotechnology, 2018, 38(12): 1-6.
[11] Li ZHANG,Juan DING,Yu-cheng HAO,Cheng YE,Yang PU. Identification of a Marine Microalgae and Optimization of Protoplast Preparation[J]. China Biotechnology, 2018, 38(11): 42-50.
[12] Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro[J]. China Biotechnology, 2018, 38(10): 82-89.
[13] Yu-rui SHENG,Bin LI,Bin WANG,Di ZUO,Lin MA,Xiao-fan REN,Le GUO,Kun-mei LIU. The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells[J]. China Biotechnology, 2018, 38(10): 38-47.
[14] Xu-peng ZHAO,Xiao-peng ZHAO,Hao SHI,Xue-mei CHEN,Ting JIANG,Yan LIU. Establishment of High Frequency Regeneration via Leaf Explants of ‘Guichang’ Kiwifruit (Actinidia chinensis)[J]. China Biotechnology, 2018, 38(10): 48-54.
[15] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.