Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (12): 50-55    DOI: 10.13523/j.cb.20191207
    
Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy
LU Zhong-teng,HU Gao-wei()
School of Life Sciences, Taizhou Univesticy, Taizhou 318000, China
Download: HTML   PDF(468KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

How to deliver bioactive molecules efficiently to target cells and tissues is still one of the challenges for researchers in the field of bioremediation. Until the advent of CPPs, its can mediate a variety of exogenous functional molecules (nucleic acids, polypeptides, proteins, and chemical drugs) into the cell without affecting the function of exogenous active molecules. In addition, CPPs show a more promising advantage in transferring exogenous active ingredients into tumor tissues and cells. Therefore, the classification, identification method, penetrating mechanism of CPPs, and its application in anti-tumor therapy which hope to provide the reference of method and novel strategy for the identification of new CPPs and anti-tumor in clinical were summarized.



Key wordsIdentification of CPPs      Penetrating mechanism      Application in anti-tumor therapy     
Received: 24 April 2019      Published: 15 January 2020
ZTFLH:  Q813  
Corresponding Authors: Gao-wei HU     E-mail: hugaowei68@163.com
Cite this article:

LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy. China Biotechnology, 2019, 39(12): 50-55.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191207     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I12/50

[1]   Gupta S K, Gandham R K, Sahoo A P , et al. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci, 2015,72(6):1073-1094.
[2]   杨姣, 孙甫 . 基因治疗核酸递送载体的研究进展. 山西医科大学学报, 2018,49(3):310-315.
[2]   Yang J, Sun P . Research progress in gene delivery vector for gene therapy. J Shanxi Med Univ, 2018,49(3):310-315.
[3]   Vivès E, Brodin P, Lebleu B . A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem, 1997,272(25):16010-16017.
[4]   Gallo M, Defaus S, Andreu D . 198 2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch Biochem Biophys, 2019,661(1):74-86.
[5]   Zou L, Peng Q, Wang P , et al. Progress in research and application of HIV-1 TAT-derived cell-penetrating peptide. J Membr Biol, 2017,250(2):115-122.
[6]   Kichler A, Mason A J, Marquette A , et al. Histidine-rich cationic cell-penetrating peptides for plasmid DNA and siRNA delivery. Methods Mol Biol, 2019,1943(3):39-59.
[7]   Tunnemann G, Ter-Avetisyan G, Martin R M , et al. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci, 2008,14(4):469-476.
[8]   Zahid M and Robbins P D . Cell-type specific penetrating peptides: Therapeutic promises and challenges. Molecules, 2015,20(7):13055-13070.
[9]   Li Q, Xu M, Cui Y , et al. Arginine-rich membrane-permeable peptides are seriously toxic. Pharmacol Res Perspect, 2017,5(5):e00334.
[10]   屈昂, 王哲, 于家峰 , 等. 不同类型细胞穿膜肽二级结构特征研究. 原子与分子物理学报, 2018,35(5):751-757.
[10]   Qu A, Wang Z, Yu J F , et al. Comprehensive analysis of secondary structures of different types of cell-penetrating peptides. Journal of Atomic and Molecular Physics, 2018,35(5):751-757.
[11]   邵安娜, 丁敏, 王文喜 . 细胞穿膜肽在给药系统中的应用. 药物生物技术, 2015,22(6):525-529.
[11]   Shao A N, Ding M, Wang W X . Cell-penetrating peptides and the application of drug delivery system. Pharmaceutical Biotechnology, 2015,22(6):525-529.
[12]   Ragin A D, Morgan R A, Chmielewski J . Cellular import mediated by nuclear localization signal peptide sequences. Chem Biol, 2002,9(8):943-948.
[13]   Yu W, Zhan Y, Xue B , et al. Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. J Biol Chem, 2018,293(39):15221-15232.
[14]   Futaki S . Membrane-permeable arginine-rich peptides and the translocation mechanisms. Advanced Drug Delivery Reviews, 2005,57(4):547-558.
[15]   Derakhshankhah H, Jafari S . Cell penetrating peptides: A concise review with emphasis on biomedical applications. Biomed Pharmacother, 2018,108(6):1090-1096.
[16]   Deshayes S, Plénat T, Aldrian-Herrada G , et al. Primary amphipathic cell-penetrating peptides: Structural requirements and interactions with model membranes. Biochemistry, 2004,43(24):7698-7706.
[17]   Kalafatovic D, Giralt E . Cell-Penetrating peptides: Design strategies beyond primary structure and amphipathicity. Molecules, 2017,22(11):1929-1967.
[18]   Radicioni G, Stringaro A, Molinari A , et al. Characterization of the cell penetrating properties of a human salivary proline-rich peptide. Biochim Biophys Acta, 2015,1848(11 PtA):2868-2877.
[19]   Gautam A, Chaudhary K, Kumar R , et al. In silico approaches for designing highly effective cell penetrating peptides. J Transl Med, 2013,11(3):74-85.
[20]   Hu G W, Zheng W L, Li A , et al. A novel CAV derived cell-penetrating peptide efficiently delivers exogenous molecules through caveolae-mediated endocytosis. Vet Res, 2018,49(1):16-24.
[21]   Ponnappan N, Chugh A . Cell-penetrating and cargo-delivery ability of a spider toxin-derived peptide in mammalian cells. Eur J Pharm Biopharm, 2017,114(5):145-153.
[22]   Zakeri M P, Mussa F S, Shirani A , et al. Cellular uptake and anti-tumor activity of gemcitabine conjugated with new amphiphilic cell penetrating peptides. EXCLI J, 2017,16(5):650-662.
[23]   Liu D, Guo H, Zheng W Y , et al. Discovery of the cell-penetrating function of A2 domain derived from LTA subunit of Escherichia coli heat-labile enterotoxin. Appl Microbiol Biotechnol, 2016,100(11):5079-5088.
[24]   Gestin M, Dowaidar M, Langel ü . Uptake mechanism of cell-penetrating peptides. Adv Exp Med Biol. 2017,1030(10):255-264.
[25]   Veach R A, Liu D, Yao S , et al. Receptor/transporter-independent targeting of functional peptides across the plasma membrane. J Biol Chem, 2004,279(12):11425-11431.
[26]   Costa Verdera H ,Gitz-Francois J J,Schiffelers R M, et al.Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release, 2017,266(22):100-108.
[27]   Kawamoto S, Takasu M, Miyakawa T , et al. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group. J Chem Phys, 2011,134(9):095-103.
[28]   Klimpel A, Lützenburg T, Neundorf I . Recent advances of anti-cancer therapies including the use of cell-penetrating peptides. Curr Opin Pharmacol, 2019,47(4):8-13.
[29]   Castro J, Ribo M, Benito A , et al. A versatile protein with selective antitumor activity. Curr Med Chem, 2018,25(30):3540-3559.
[30]   Guelen L, Paterson H, G?ken J , et al. TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells. Oncogene, 2004,23(5):1153-1165.
[31]   Yang E C, Li X, Jin N Y . The chimeric multi-domain proteins mediating speciic DNA transfer for hepatocellular carcinoma treatment. Cancer Cell Int, 2016,16(10):80-92.
[32]   Song W W, Zhao H Y, Cui Z Q , et al. Creation of an apoptin-derived peptide that interacts with SH3 domains and inhibits glioma cell migration and invasion. Tumour Biol, 2016. 37(11):15229-15240.
[33]   Zhang L Q, Zhao H Y, Cui Z Q , et al. A peptide derived from apoptin inhibits glioma growth. Oncotarget, 2017,8(19):31119-31132.
[34]   Zhou D Y, Liu W J, Liang S H , et al. Apoptin- derived peptide reverses cisplatin resistance in gastric cancer through the PI3Khe PI3Khe PI3K domains. Cancer Medicine, 2018,7(4):1369-1383.
[35]   Shteinfer-Kuzmine A, Amsalem Z, Arif T , et al. Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy. Mol Oncol, 2018,12(7):1077-1103.
[36]   Liu Y, Song Z Y, Zheng N , et al. Systemic siRNA delivery to tumors by cell penetrating α-helical polypeptide-based metastable nanoparticles. Nanoscale, 2018, 16; 10(32):15339-15349.
[37]   Fang B, Jiang L, Zhang M , et al. A novel cell-penetrating peptide TAT-A1 delivers siRNA into tumor cells selectively. Biochimie, 2013,95(2):251-257.
[38]   Ruoslahti E, Bhatia S N, Sailor M J . Targeting of drugs and nanoparticles to tumors. J Cell Biol, 2010,188(6):759-768.
[39]   Bi Y, Lee R J, Wang X , et al. Liposomal codelivery of an SN38 pro-drug and a survivin siRNA for tumor therapy. Int J Nanomedicine, 2018,13(10):5811-5822.
[40]   Xiang Y, Shan W, Huang Y . Improved anticancer efficacy of doxorubicin mediated by human-derived cell-penetrating peptide dNP2. Int J Pharm, 2018,551(1-2):14-22.
[41]   Lim K J, Sung B H, Shin J R , et al. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS One, 2013,8(6):e66084.
[42]   Grau M, Walker P R, Derouazi M . Mechanistic insights into the efficacy of cell penetrating peptide-based cancer vaccines. Cell Mol Life Sci, 2018,75(16):2887-2896.
[43]   Derouazi M , Di Berardino-Besson W, Belnoue E, et al. Novel cell-penetrating peptide-based vaccine induces robust CD4 + and CD8 + T cell-mediated antitumor immunity . Cancer Res, 2015,75(15):3020-3031.
[44]   Belnoue E ,Di Berardino-Besson W,Gaertner H, et al.Enhancing antitumor immune responses by optimized combinations of cellpenetrating peptide-based vaccines and adjuvants. Mol Ther, 2016,24(9):1675-1685.
[45]   Gross D A, Leborgne C, Chappert P , et al. Induction of tumor-specific CTL responses using the C-terminal fragment of viral protein R as cell penetrating peptide. Sci Rep, 2019,9(1):3937-3947.
[46]   Feni L, Neundorf I . The current role of cell-penetrating peptides in cancer therapy. Adv Exp Med Biol, 2017,1030(10):279-295.
[47]   Ramsey J D, Flynn N H . Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther, 2015,154(5):78-86.
[48]   Yang Y, Yang Y, Xie X , et al. Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. Biomaterials, 2015,48(4):84-96.
[1] YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment[J]. China Biotechnology, 2021, 41(9): 48-54.
[2] QIU Jin-ge,LIU De-wu,SUN Bao-li,LI Yao-kun,GUO Yong-qing,DENG Ming,LIU Guang-bin. Research Progress on Animal Exosome Isolation Methods[J]. China Biotechnology, 2020, 40(9): 36-42.
[3] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[4] CHEN Cui-xia,WANG Xiao-long,JIANG Tai-jiao,CAO Zong-fu,LI Tian-jun,YU Lei,YU Yu-fei,CAI Rui-kun,GAO Hua-fang,Ma Xu. Platform Construction for the Early-Warning Forecast in Prevention and Control of Influenza Based on Multi-Source Heterogeneous Big-Data Mining[J]. China Biotechnology, 2020, 40(1-2): 109-115.
[5] LI Yu,ZHANG Xiao. The Experience and Enlightenment of Cell Therapy Regulation Dual-track System in Japan[J]. China Biotechnology, 2020, 40(1-2): 174-179.
[6] Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function[J]. China Biotechnology, 2019, 39(6): 84-90.
[7] Xin LI,Zhong-li ZHAO,Xiao-tong LUO,Yang CAO,Li-chun ZHANG,Yong-sheng YU,Hai-guo JIN. Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells[J]. China Biotechnology, 2019, 39(4): 94-100.
[8] Yi SONG,Cui-yun ZHANG,Yi LI,Su-su ZHANG,Shun PAN,Yun-yun TAO,Lu-yao XU,Hua-cheng HE,Jiang WU. Preparation of a Novel Surgical Sewing Thread with Control Release of Basic Fibroblast Growth Factor Through Electrospinning Technology[J]. China Biotechnology, 2019, 39(1): 55-62.
[9] Yue-lei FAN,Jiao LU,Da-ming CHEN,Kai-yun MAO. Strategies for Stem Cell Patent Evaluation and Patent Transfer and Transformation[J]. China Biotechnology, 2019, 39(1): 99-106.
[10] ZHONG Peng-qiang,LIU Bei-zhong,YAO Juan-juan,LIU Dong-dong,YUAN Zhen,LIU Jun-mei,CHEN Min,ZHONG Liang. Knock-down of ACTL6A Promote Differentiation of NB4 Cells via the Notch1 Signaling Pathway[J]. China Biotechnology, 2018, 38(12): 1-6.
[11] Li ZHANG,Juan DING,Yu-cheng HAO,Cheng YE,Yang PU. Identification of a Marine Microalgae and Optimization of Protoplast Preparation[J]. China Biotechnology, 2018, 38(11): 42-50.
[12] Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro[J]. China Biotechnology, 2018, 38(10): 82-89.
[13] Xu-peng ZHAO,Xiao-peng ZHAO,Hao SHI,Xue-mei CHEN,Ting JIANG,Yan LIU. Establishment of High Frequency Regeneration via Leaf Explants of ‘Guichang’ Kiwifruit (Actinidia chinensis)[J]. China Biotechnology, 2018, 38(10): 48-54.
[14] Yu-rui SHENG,Bin LI,Bin WANG,Di ZUO,Lin MA,Xiao-fan REN,Le GUO,Kun-mei LIU. The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells[J]. China Biotechnology, 2018, 38(10): 38-47.
[15] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.