Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (10): 38-47    DOI: 10.13523/j.cb.20181005
Orginal Article     
The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells
Yu-rui SHENG1,Bin LI1,Bin WANG1,2,Di ZUO2,Lin MA2,Xiao-fan REN2,Le GUO1,3,**(),Kun-mei LIU2,**()
1 Ningxia Medical University Clinical Medical College , Yinchuan 750004, China
2 Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
3 Ningxia Clinical Microbiology Key Laboratory, Yinchuan 750003, China
Download: HTML   PDF(2429KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Astrocyte elevated gene-1 (AEG-1) was overexpressed in a diverse array of cancers and played an important role in the development and progression of cancer. The study aimed to construct the AEG-1-knockout U251 cell line by CRISPR/Cas9 technology and to explore the effect of AEG-1 on the metastasis in U251 Cells. Firstly, the designed sgRNA targeted to AEG-1 was synthesized, and was cloned into the pX459 plasmid to obtain the AEG-1-pX459 recombinant vector. The recombinant vector was transfected into human glioma U251 cells, and the activity of sgRNA was identified by TA cloning sequencing. Then, the U251 cells transferred with the recombinant vector were screened by puromycin to get the AEG-1-knockout cell line. The efficiency of gene knockout was detected by Western blot assay. Finally, the migration ability of the AEG-1-knockout cell line was evaluated by the methods of Transwell and Scratch experiment. The results showed that the AEG-1-pX459 recombinant vector was successfully constructed, and the sgRNA activity was confirmed by TA cloning sequencing. The AEG-1-knockout U251 cell line was successfully established. Western blot assay analysis showed that the knockout efficiency high to 98%. The Transwell and Scratch experiment results illustrated that the migration ability of the AEG-1-knockout cell line reduced obviously.



Key wordsAstrocyte elevated gene-1(AEG-1)      CRISPR/Cas9      Gene knockout      U251 cells     
Received: 10 May 2018      Published: 09 November 2018
ZTFLH:  Q813  
Corresponding Authors: Le GUO,Kun-mei LIU     E-mail: guoletian1982@163.com;lkm198507@126.com
Cite this article:

Yu-rui SHENG,Bin LI,Bin WANG,Di ZUO,Lin MA,Xiao-fan REN,Le GUO,Kun-mei LIU. The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells. China Biotechnology, 2018, 38(10): 38-47.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181005     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I10/38

Fig.1 Schematic of pX459 plasmid and Bbs I endonuclease site (a) Schematic of pX459 plasmid, sgRNA scaffold is located under U6 promoter and contains 2 Bbs I endonuclease sites (b) Bbs I endonuclease site, which can recognize GAAGAC sequence and cut from the 2nd base after that sequence and the 6th base from the complimentary strand to form the specific cohesive terminus
名称
Name
序列
Sequence
AEG-1- sgRNA-1 5'-CACCGACTTCAACAGTCCGCCCATT-3'
3'-CTGAAGTTGTCAGGCGGGTAACAAA-5'
AEG-1- sgRNA-2 5'-CACCGCAAAACAGTTCACGCCATGA-3'
3'-CGTTTTGTCAAGTGCGGTACTCAAA-5'
AEG-1- sgRNA-3 5'- CACCGACAGCAGCGTAAACGTGATA-3'
3'- CTGTCGTCGCATTTGCATATCAAA-5'
Table 1 AEG-1 sgRNA Oligo
名称
Name
序列
Sequence
PCR产物大小
The size of PCR product
Short-chain primer of AEG-1-1 5'-TCCTGCGTATAAATCTTTG-3'
3'-TTTACCACCCATCCACTA-5'
324
Short-chain primer of AEG-1-2 5'-TAAAGCAGTGCAAAACAG -3'
3'-TTCCAGGAGACAAAGACA-5'
325
Short-chain primer of AEG-1-3 5'-GGTGCTGACTGATTCTGG -3'
3'-CTGCTGGTATTCGGTAAA-5'
293
Table 2 PCR primers for short-chain PCR and used for TA cloning analysis
Fig.2 Identification of pX459-AEG-1 (a) Enzyme digestion results illustrated that all the plasmids had donor DNA insert (b) DNA sequencing of pX459-AEG-1, the results demonstrated that all the plasmids had donor DNA insert with correct ORF
Fig.3 TA cloning analysis to identify Indel mutations (a) The mutations of pX459-AEG-1-2 (b) The mutations of pX459-AEG-1-3
Fig.4 Evaluation of AEG-1 gene expression in stable AEG-1 gene knock out cell lines (a) Western blot verified the protein expression level of AEG-1 (b) GraphPad prism software analyzed the results of Western blot. The efficiency of pX459-AEG-1-3 was the best. The knockout efficiency reached 98% , **** P<0.001 vs control (Cas9) group
Fig.5 Transwell chamber experiments test the invasive ability of the AEG-1 knockout cell lines
Fig.6 Scratch experiments test the migration ability of the AEG-1 knockout cell lines (a) Scratch experiments verified the wound healing distance of AEG-1 (b) GraphPad prism software analyzed the results of scratch experiments **** P<0.001 vs control (Cas9) group
[1]   Yoo B K, Emdad L, Lee S G , et al. Astrocyte elevated gene-1(AEG-1):a multifunctional regulator of normal and abnormal physiology. Pharmacology & Therapeutics, 2011,130(1):1-8.
doi: 10.1016/j.pharmthera.2011.01.008 pmid: 21256156
[2]   Lee S G, Kang D C, Desalle R , et al. AEG-1/MTDH/LYRIC, the beginning: initial cloning, structure, expression profile, and regulation of expression. Adv Cancer Res, 2013,120:1-38.
doi: 10.1016/B978-0-12-401676-7.00001-2
[3]   Ash S C, Yang D Q, Britt D E . LYRIC/AEG-1 overexpression modulates BCCIPalpha protein levels in prostate tumor cells. Biochemical & Biophysical Research Communications, 2008,371(2):333-338.
doi: 10.1016/j.bbrc.2008.04.084 pmid: 2573900
[4]   Emdad L, Lee S G, Su Z Z , et al. Astrocyte elevated gene-1(AEG-1) functions as an oncogene and regulates angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(50):21300-21305.
doi: 10.1073/pnas.0910936106
[5]   Kang D C, Su Z Z, Sarkar D , et al. Cloning and characterization of HIV-1-inducible astrocyte elevated gene-1, AEG-1. Gene, 2005,353(1):8-15.
doi: 10.1016/j.gene.2005.04.006 pmid: 15927426
[6]   Yoo B K, Chen D, Su Z Z , et al. Molecular mechanism of chemoresistance by astrocyte elevated Gene-1. Cancer Research, 2010,70(8):3249-3258.
doi: 10.1158/0008-5472.CAN-09-4009 pmid: 2855753
[7]   Emdad L, Sarkar D, Lee S G , et al. Astrocyte elevated gene-1:a novel target for human glioma. Molecular Cancer Therapeutics, 2010,9(1):79-88.
doi: 10.1158/1535-7163.MCT-09-0752 pmid: 20053777
[8]   Sander J D, Joung J K . CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014,32(4):347-355.
doi: 10.1038/nbt.2842 pmid: 24584096
[9]   Pelletier S, Gingras S, Green D R . Mouse genome engineering via CRISPR-Cas9 for study of immune function. Immunity, 2015,42(1):18-27.
doi: 10.1016/j.immuni.2015.01.004 pmid: 4720985
[10]   Liu L, Wu J, Ying Z , et al. Astrocyte elevated gene-1 upregulates matrix metalloproteinase-9 and induces human glioma invasion. Cancer Research, 2010,70(9):3750-3759.
doi: 10.1158/0008-5472.CAN-09-3838
[11]   Ota S, Kawahara A . Zebrafish: a model vertebrate suitable for the analysis of human genetic disorders. Congenit Anom, 2014,54(1):8-11.
doi: 10.1111/cga.12040 pmid: 24279334
[12]   Xue W, Chen S D, Yin H , et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 2014,514(7522):380-384.
doi: 10.1038/nature13589 pmid: 25119044
[13]   Su S, Hu B, Shao J , et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep, 2016,6:20070.
doi: 10.1038/srep20070 pmid: 4730182
[14]   Ren J, Zhang X, Liu X , et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget, 2017,8(10):17002-17011.
doi: 10.18632/oncotarget.15218 pmid: 28199983
[15]   Merhavi-Shoham E, Itzhaki O, Markel G , et al. Adoptive cell therapy for metastatic melanoma. Cancer J, 2017,23(1):48-53.
doi: 10.1097/PPO.0000000000000240 pmid: 28114254
[16]   Shao H, Lin Y, Wang T , et al. Identification of peptide-specific TCR genes by in vitro peptide stimulation and CDR 3 length polymorphism analysis. Cancer Lett, 2015,363(1):83-91.
doi: 10.1016/j.canlet.2015.04.001 pmid: 25890221
[17]   邵红伟, 陈辉, 彭鑫 , 等. CRISPR-Cas9系统定向编辑TCR基因的sgRNA筛选. 集美大学学报(自然版), 2015,20(4):265-270.
doi: 10.3969/j.issn.1007-7405.2015.04.005
[17]   Shao H W, Chen H, Peng X , et al. SgRNA screening of directed edited TCR gene in CRISPR-Cas9 system. Journal of Jimei University (Natural Science), 2015,20(4):265-270.
doi: 10.3969/j.issn.1007-7405.2015.04.005
[18]   Ren J, Liu X, Fang C , et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res, 2016,23(9):2255-2266.
[19]   Steinhart Z, Pavlovic Z, Chandrashekhar M , et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med, 2017,23(1):60-68.
doi: 10.1038/nm.4219 pmid: 27869803
[20]   Cheong T C, Compagno M, Chiarle R . Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nat Commun, 2016,7:10934.
doi: 10.1038/ncomms10934 pmid: 26956543
[21]   Cong L, Ran F A, Cox D , et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1231143
[22]   Jinek M, Jiang F, Taylor D W , et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014,343(6176):1247997.
doi: 10.1126/science.1247997
[23]   Liu L, Fan X D . CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol Biol, 2014,85(3):209-218.
doi: 10.1007/s11103-014-0188-7 pmid: 24639266
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[4] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[5] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[6] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[7] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[8] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[9] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[10] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[11] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[12] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[13] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[14] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[15] WU Guo-guo,SONG Shu-ting,YUE Rong,ZHANG Jing,GUAN Ying,WANG Yue,LIU Bao-ai,LV Xue-min,WEI Jian-jun,ZHANG Hui-tu. Application of Counterseletable Gene upp in Genetic Manipulation of Streptomyces fungicidicus[J]. China Biotechnology, 2019, 39(11): 78-86.