Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (7): 59-69    DOI: 10.13523/j.cb.2001061
    
Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus
CHEN Fei,WANG Xiao-bing,XU Zeng-hui(),QIAN Qi-jun()
Shanghai Cell Therapy Engineering Technology Research Center, Shanghai 200000, China
Download: HTML   PDF(834KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Diabetes is a chronic metabolic disease of hyperglycemia caused by various factors, which has developed into one of the epidemic diseases. Chemical anti-diabetic drugs can control the blood glucose and delay the progress of the disease, which needs to be taken for a long time to be effectively controlled. The current gold standard therapy for pancreas transplantation, but it has not been widely used because of the shortage of pancreas and the need for long-term use of immunosuppressive drugs. Mesenchymal stem cells (MSCs) are a kind of self-proliferation cells with the potential of multi-directional differentiation and paracrine characteristics. Recent studies have proved that MSCs have positive effects in the treatment of diabetes, and are considered as the ideal cell type for treatment of diabetes. Therefore, this review The molecular mechanisms and clinical research of MSCs for diabetes mellitus were briefly described.



Key wordsDiabetes mellitus      Mesenchymal stem cells      Mesenchymal stem cells differentiation      Paracrine     
Received: 20 January 2020      Published: 13 August 2020
ZTFLH:  Q813  
Corresponding Authors: Zeng-hui XU,Qi-jun QIAN     E-mail: zenghuixu@163.com;qianqj@163.com
Cite this article:

CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus. China Biotechnology, 2020, 40(7): 59-69.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2001061     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I7/59

Fig.1 Statistics on the proportion and number of diabetics with diabetes and IGT in China in 2017. And the prediction of the proportion and number of people suffering from diabetes and IGT in 2045 (a) Statistics the proportion of Diabetes and IGT in China in 2017and 2045 (b) Statistics the number of Diabetes and IGT in China Data from IDF in 2017 and 2045
Fig.2 Introduction the function of mesenchymal stem cells
细胞来源 诱导程序 基础培养基 诱导剂 培养天数 参考文献
第一步 无血清H-DMEM 0.5mmol/L β-巯基乙醇 2天 [20-21]
BM-MSCs 第二步 无血清H-DMEM 1%非必需氨基酸、20ng/ml β-FGF、2% B27,2mmol/L L-谷氨酰胺 8天
第三步 无血清H-DMEM 10ng/ml β-FGF、10ng/ml 激活素 A、2%B27、10mmol/L烟酰胺 8天
UC-MSCs 第一步 10%FBS H-DMEM 6mmol/L维甲酸 2天 [22]
第二步 10%FBS L-DMEM 10mmol/L烟酰胺、20ng/ml表皮生长因子 6天
第三步 10%FBS L-DMEM 10nmol/L 肠促胰岛素类似物-4 6天
ADSCs 一步法诱导 DMEM/F12 10mmol/L烟酰胺、2nmol/L 激活素-A、10nmol/L 肠促胰岛素类似物-4、100pmol/L HGF、10nmol/L五肽促胃酸激素、B27血清替代物、N-2添加剂 3天 [26-27]
Table 1 The processes of mesenchymal MSCs induction into insulin producing cell in vitro
序列 细胞来源 回输细胞数量 受试者数 注射方式 随访时间 治疗效果 参考文献
1 HSC 11.0×106cells /kg 28 静脉 36个月 AUCc-pep↑, GAD↓, HbA1C↓,胰岛素需求量↓ [72]
2 BM-MNC 180×106cells /kg 3 肝穿刺 12个月 ICA、GAD、抗胰岛素抗体水平为阴性,C肽水平↑,HbA1c↓ [73]
3 UC-MSCs 2.6 ±1.2×107 cells 29 24个月 FPG↓,PPG↓,HbA1c↓,C肽水平↑,CPGR↑,胰岛素需求量↓ [74]
4 BM-MSC 2.75×106cells/kg 20 静脉 12个月 C肽水平↑或者─ [75]
5 AD-MSC and BM-HSC 20 门脉+胸腺循环及皮下组织 24个月 HbA1c↓,C肽水平↑,胰岛素需求量↓,GAD↓ [29]
6 UC-MSCs and aBM-MNC 1.1×106cells /kg and 106.8×106cells /kg 42 胰背动脉 12个月 AUCc-pep↑,胰岛素面积↑,HbA1C↓,胰岛素需求量↓ [76]
Table 2 Effect of MSCs from different sources on clinical study of type 1 diabetes
序列 细胞来源 细胞回输数量 受试者数 注射方式 随访时间 治疗效果 参考文献
1 BM-MSCs 3.5±1.4×108cells 10 12指肠 6个月 HbA1c↓, 胰岛素需求量↓ [77]
2 BM-MSCs 2.8 ± 1.9 × 109cells 118 胰背动脉 33个月 FPG↓,HbA1c↓,C肽水平↑,CPGR↑, 胰岛素需求量↓ [78]
3 UC-MSCs 1.0×106cells/kg 61 静脉 36个月 FPG↓,HbA1c↓,PPG↓, C肽水平↑,CPGR↑, HOMA-β↑,胰岛素需求量↓ [79]
4 UC-MSCs 1.8×106cells /kg 18 静脉 6个月 FPG↓,PPG↓,C肽水平↑, Tregs↑ [80]
5 PDSC 1.35×106cells /kg 10 静脉 3个月 胰岛素需求量↓,C肽水平↑ [81]
6 ADSCs NA 40 静脉 3个月 FPG↓,HbA1c↓,胰岛素需求量↓,C肽水平↑ [82]
Table 3 Effect of MSCs from different sources on clinical study of type II diabetes
[1]   Zimmet P. Globalization,coca-colonization and the chronic disease epidemic: Can the doomsday scenario be averted. Journal of Internal Medicine, 2000,247(3):301-310.
doi: 10.1046/j.1365-2796.2000.00625.x pmid: 10762445
[2]   Amos A F, Mccarty D J, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Medicine, 1997,14(S5):S7-S85.
doi: 10.1002/(SICI)1096-9136(199712)14:5+<S7::AID-DIA522>3.3.CO;2-I
[3]   King H, Aubert R E, Herman W H. Global burden of diabetes, 1995 2025: Prevalence, numerical estimates, and projections. Diabetes Care, 1998,21(9):1414-1431.
doi: 10.2337/diacare.21.9.1414 pmid: 9727886
[4]   Shafrir E. Development and consequences of insulin resistance: lessons from animals with hyperinsulinaemia. Diabetes & Metabolism, 1996,22(2):122-131.
pmid: 8792092
[5]   Benjamin E J, Virani S S, Callaway C W, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018,137(12):e67-e492.
doi: 10.1161/CIR.0000000000000558 pmid: 29386200
[6]   Beckman J A, Creager M A, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002,287(19):2570-2581.
doi: 10.1001/jama.287.19.2570 pmid: 12020339
[7]   Margaret Chan. Global report on diabetes. [2020-06-25]. http://www.who.int/diabetes/global-report/en/. .
[8]   WHO. Global Strategy on diet, physical activity and health. Scandinavian Journal of Nutrition, 2009,48(2):292-302.
[9]   American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2013,36(Suppl 1):S67-S74.
doi: 10.2337/dc13-S067
[10]   International Diabetes Foundation. Diabetes Atlas 8th Edition. [2020-06-25]. http://www.dia-betesatlas.org.
[11]   张波, 杨文英. 中国糖尿病流行病学及预防展望. 中华糖尿病杂志, 2019,11(1):7-10.
[11]   Zhang B, Yang W Y. Outlook for the epidemiology and prevention of diabetes in china. Chin J Diabetes Mellitus, 2019,11(1):7-10.
[12]   Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. 2017,317(24):2515-2523.
doi: 10.1001/jama.2017.7596 pmid: 28655017
[13]   American Diabetes Association. Standards of medical care in diabetes 2019. Diabetes Care, 2019,42(Suppl 1):S1-S193.
doi: 10.2337/dc19-Sint01 pmid: 30559224
[14]   Friedenstein A J, Petrakova K V, Kurolesova A I, et al. Heterotopic of bone marrow, analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 1968,6(2):230-247.
pmid: 5654088
[15]   Anker P S, Scherjon S A, Kleijburg-van Dder K C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 2004,22(7):1338-1345.
doi: 10.1634/stemcells.2004-0058 pmid: 15579651
[16]   Zu P A, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering Part A, 2001,7(2):211-228.
[17]   Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy, 2006,8(4):315-317.
doi: 10.1080/14653240600855905 pmid: 16923606
[18]   Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 2008,8(9):726-736.
pmid: 19172693
[19]   Kolb H, Mandrup-Poulsen T. The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. Diabetologia, 2010,53(1):10-20.
doi: 10.1007/s00125-009-1573-7 pmid: 19890624
[20]   Sun Y, Chen L, Hou X G, et al. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Medical Journal, 2007,120(9):771-776.
pmid: 17531117
[21]   Khorsandi L, Khodadadi A, Nejad-Dehbashi F, et al. Three-dimensional differentiation of adipose-derived mesenchymal stem cells into insulin-producing cells. Cell and Tissue Research, 2015,361(3):745-753.
doi: 10.1007/s00441-015-2140-9 pmid: 25795142
[22]   Gao F, Wu D Q, Hu Y H, et al. In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells. Translational Research, 2008,151(6):293-302.
pmid: 18514140
[23]   Tang D Q, Wang Q, Burkhardt B R, et al. In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. Am J Stem Cell, 2012,1(2):114-127.
[24]   Piran M, Enderami S E, Piran M, et al. Insulin producing cells generation by overexpression of miR-375 in adipose-derived mesenchymal stem cells from diabetic patients. Biologicals, 2017,46(5):23-28.
doi: 10.1016/j.biologicals.2016.12.004
[25]   Van P P, Thi-My N P, Thai-Quynh N A, et al. Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection. Differentiation, 2014,87(5):200-208.
pmid: 25201603
[26]   Timper K, Seboek D, Eberhardt M, et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochemical & Biophysical Research Communications, 2006,341(4):1135-1140.
doi: 10.1016/j.bbrc.2006.01.072 pmid: 16460677
[27]   Trivedi H L, Vanikar A V, Thakker U, et al. Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplantation Proceedings, 2008,40(4):1135-1139.
[28]   Dave S D, Trivedi H L, Gopal S C, et al. Combined therapy of insulin-producing cells and haematopoietic stem cells offers better diabetic control than only haematopoietic stem cells’ infusion for patients with insulin-dependent diabetes. Bmj Case Reports, 2014,8(1):38-41.
[29]   Thakkar U G, Trivedi H L, Vanikar A V, et al. Co-infusion of insulin-secreting adipose tissue-derived mesenchymal stem cells and hematopoietic stem cells: novel approach to management of type 1 diabetes mellitus. International Journal of Diabetes in Developing Countries, 2016,36(4):426-432.
doi: 10.1007/s13410-015-0409-x
[30]   Shapiro A M. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. The New England Journal of Medicine, 2000,343(4):230-238.
doi: 10.1056/NEJM200007273430401 pmid: 10911004
[31]   Ryan E A, Paty B W, Senior P A, et al. Five years follow up after clinical islet transplantation. Diabetes, 2005,54(7):2060-2069.
doi: 10.2337/diabetes.54.7.2060 pmid: 15983207
[32]   Scharp D W, Lacy P E, Santiago J V, et al. Results of our first nine intraportal islet allografts in type 1, insulin-dependent diabetic patients. Transplantation, 1991,51(1):76-85.
doi: 10.1097/00007890-199101000-00012 pmid: 1987709
[33]   Hayek A, Beattie G M, Cirulli V, et al. Growth factor matrix-induced proliferation of human adult beta-cells. Diabetes, 1995,44(12):1458-1460.
doi: 10.2337/diab.44.12.1458 pmid: 7589854
[34]   Yoshihiko I, Takeshi A, Dausuke Y, et al. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic beta-cells. Biochem Biophys Res Commun, 2005,333(1):273-282.
pmid: 15950193
[35]   Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nature Biotechnology, 2003,21(7):763-770.
doi: 10.1038/nbt841 pmid: 12819790
[36]   Park K S, Kim Y S, Kim J H, et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation, 2010,89(5):509-517.
doi: 10.1097/TP.0b013e3181c7dc99 pmid: 20125064
[37]   Yoshiaki O, Masahiro T, Naomasa K, et al. Combined transplantation of pancreatic islets and adipose tissue-derived stem cells enhances the survival and insulin function of islet grafts in diabetic mice. Transplantation, 2010,90(12):1366-1373.
doi: 10.1097/TP.0b013e3181ffba31 pmid: 21076379
[38]   Wang H, Strange C, Nietert P J, et al. Autologous mesenchymal stem cell and islet cotransplantation: safety and efficacy. Stem Cells Translational Medicine, 2017,7(1):11-19.
doi: 10.1002/sctm.17-0139 pmid: 29159905
[39]   Ryan J M, Barry F P, Murphy J M, et al. Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation, 2005,2(1):8-19.
doi: 10.1186/1476-9255-2-8
[40]   Vasandan A B, Jahnavi S, Shashank C, et al. Human mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Scientific Reports, 2016,6(1):1-17.
doi: 10.1038/s41598-016-0001-8 pmid: 28442746
[41]   Mittal M, Tiruppathi C, Nepal S, et al. TNFα-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury. Proc Natl Acad Sci USA, 2016,113(50):e8151-e8158.
doi: 10.1073/pnas.1614935113 pmid: 27911817
[42]   Wang G, Cao K, Liu K, et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death & Differentiation, 2018,25(7):1209-1223.
doi: 10.1038/s41418-017-0006-2 pmid: 29238069
[43]   Selleri S, Bifsha P, Civini S, et al. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming. Oncotarget, 2016,7(21):30193-30210.
doi: 10.18632/oncotarget.8623 pmid: 27070086
[44]   Yang Q, Zheng C, Cao J, et al. Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death and Differentiation, 2016,23(11):1850-1861.
doi: 10.1038/cdd.2016.71 pmid: 27447115
[45]   Su J, Chen X, Huang Y, et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death and Differentiation, 2014,21(3):388-396.
doi: 10.1038/cdd.2013.149 pmid: 24162664
[46]   Aggarwal S. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005,105(4):1815-1822.
doi: 10.1182/blood-2004-04-1559 pmid: 15494428
[47]   Chabannes D, Hill M, Merieau E, et al. A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood, 2007,110(10):3691-3694.
doi: 10.1182/blood-2007-02-075481 pmid: 17684157
[48]   Cao W, Yang Y, Wang Z, et al. Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity, 2011,35(2):273-284.
pmid: 21835648
[49]   Augello A, Tasso R, Negrini S, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 2005,35(5):1482-1490.
doi: 10.1002/eji.200425405 pmid: 15827960
[50]   Sioud M, Mobergslien A, Boudabous A, et al. Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scandinavian Journal of Immunology, 2010,71(4):267-274.
doi: 10.1111/j.1365-3083.2010.02378.x pmid: 20384870
[51]   Hsu W T, Lin C H, Chiang B L, et al. Prostaglandin E-2 potentiates mesenchymal stem cell-induced IL-10(+) IFN-gamma(+) CD4(+) regulatory T cells to control transplant arteriosclerosis. The Journal of Immunology, 2013,190(5):2372-2380.
doi: 10.4049/jimmunol.1202996 pmid: 23359497
[52]   Groh M E, Maitra B, Szekely E, et al. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Experimental Hematology, 2005,33(8):928-934.
doi: 10.1016/j.exphem.2005.05.002 pmid: 16038786
[53]   Corradiperini C, Santos T M, Nos C, et al. Co-transplantation of xenogeneic bone marrow-derived mesenchymal stem cells alleviates rejection of pancreatic islets in non-obese diabetic mice. Transplantation Proceedings, 2017,49(4):902-905.
[54]   Ding Y, Xu D, Feng G, et al. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes, 2009,58(8):1797-1806.
doi: 10.2337/db09-0317 pmid: 19509016
[55]   Yoshihiko I, Takeshi A, Dausuke Y, et al. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic beta-cells. Biochem Biophys Res Commun, 2005,333(1):273-282.
doi: 10.1016/j.bbrc.2005.05.100 pmid: 15950193
[56]   Movassat J, Saulnier C, Portha B. Insulin administration enhances growth of the cell mass in streptozotocin treated newborn rats. Diabetes, 1997,46(9):1445-1452.
pmid: 9287045
[57]   Hao H J, Liu J J, Shen J. Multiple intravenous infusions of bone marrow mesenchymal stem cells reverse hyperglycemia in experimental type 2 diabetes rats. Biochemical and Biophysical Research Communications, 2013,436(3):418-423.
doi: 10.1016/j.bbrc.2013.05.117 pmid: 23770360
[58]   Moshtagh P R, Emami S H, Sharifi A M. Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. Journal of Physiology and Biochemistry, 2013,69(3):451-458.
doi: 10.1007/s13105-012-0228-1 pmid: 23271274
[59]   Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes, 2012,61(6):1616-1625.
doi: 10.2337/db11-1141 pmid: 22618776
[60]   Lee R H, Seo M J, Reger R L, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences, 2006,103(46):17438-17443.
[61]   Collombat P, Xu X, Ravassard P, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β Cells. Cell, 2009,138(3):449-462.
doi: 10.1016/j.cell.2009.05.035 pmid: 19665969
[62]   Chandravanshi B, Bhonde R R. Shielding engineered islets with mesenchymal stem cells enhance survival under hypoxia. Journal of Cellular Biochemistry, 2017. 118(9):2672-2683.
doi: 10.1002/jcb.25885 pmid: 28098405
[63]   Ohkouchi S, Block G J, Katsha A M, et al. Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the warburg effect by secreting STC1. Molecular Therapy, 2012,20(2):417-423.
doi: 10.1038/mt.2011.259 pmid: 22146344
[64]   Li J, Li D, Liu X, et al. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. Journal of Inflammation, 2012,9(1):9-33.
pmid: 22439901
[65]   Lesley G E, Andrew J, Jerrold M O. Obesity, inflammation, and insulin resistance. New York: Springer, 2013: 1-23.
[66]   Jurrissen T J, Dylan O T, Winn N C, et al. Endothelial dysfunction occurs independently of adipose tissue inflammation and insulin resistance in ovariectomized Yucatan miniature-swine. Adipocyte, 2018,7(1):35-44.
doi: 10.1080/21623945.2017.1405191 pmid: 29283284
[67]   Chen T, Xing J, Liu Y. Effects of telmisartan on vascular endothelial function, inflammation and insulin resistance in patients with coronary heart disease and diabetes mellitus. Experimental and Therapeutic Medicine, 2018,15(1):909-913.
doi: 10.3892/etm.2017.5451 pmid: 29399098
[68]   Bhakta H K, Paudel P, Fujii H, et al. Oligonol promotes glucose uptake by modulating the insulin signaling pathway in insulin-resistant HepG2 cells via inhibiting protein tyrosine phosphatase 1B. Archives of Pharmacal Research, 2017,40(11):1314-1327.
doi: 10.1007/s12272-017-0970-6 pmid: 29027136
[69]   Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats. Diabetes. 2012,61(6):1616-1625.
doi: 10.2337/db11-1141 pmid: 22618776
[70]   Deng Z, Xu H, Zhang J, et al. Infusion of adipose derived mesenchymal stem cells inhibits skeletal muscle mitsugumin 53 elevation and thereby alleviates insulin resistance in type 2 diabetic rats. Molecular Medicine Reports, 2018. 17(6):8466-8474.
pmid: 29693163
[71]   Shree N, Bhonde R R. Conditioned media from adipose tissue derived mesenchymal stem cells reverse insulin resistance in cellular models. Journal of Cellular Biochemistry, 2017. 118(8):2037-2043.
doi: 10.1002/jcb.25777 pmid: 27791278
[72]   Voltarelli J C, Couri C, Stracieri A, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. The Journal of the American Medical Association, 2007,297(14):1568-1576.
doi: 10.1001/jama.297.14.1568 pmid: 17426276
[73]   Mesples A, Majeed N, Zhang Y, et al. Early immunotherapy using autologous adult stem cells reversed the effect of anti-pancreatic islets in recently diagnosed type 1 diabetes mellitus: preliminary results. Medical Science Monitor, 2013,19(14):852-857.
doi: 10.12659/MSM.889525
[74]   Hu J, Yu X, Wang Z, et al. Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrine Journal, 2013,60(3):347-357.
doi: 10.1507/endocrj.ej12-0343 pmid: 23154532
[75]   Carlsson P O, Schwarcz E, Korsgren O. Preserved β-Cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes. 2015,64(2):587-592.
doi: 10.2337/db14-0656 pmid: 25204974
[76]   Cai J, Wu Z, Xu X, et al. Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: A pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care, 2016,39(1):149-157.
doi: 10.2337/dc15-0171 pmid: 26628416
[77]   Bhansali A, Upreti V, Khandelwal N, et al. Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells and Development, 2009,18(10):1407-1416.
doi: 10.1089/scd.2009.0164 pmid: 19686048
[78]   Hu J, Li C, Wang L, et al. Long term effects of the implantation of autologous bone marrow mononuclear cells for type 2 diabetes mellitus. Endocrine Journal, 2012,59(11):1031-1039.
doi: 10.1507/endocrj.ej12-0092 pmid: 22814142
[79]   Hu J, Wang Y, Gong H, et al. Long term effect and safety of Wharton’s jelly-derived mesenchymal stem cells on type 2 diabetes. Experimental and Therapeutic Medicine, 2016,12(3):1857-1866.
pmid: 27588104
[80]   Kong D, Zhuang X, Wang D, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus. Clinical Laboratory, 2014,60(12):1969-1976.
doi: 10.7754/clin.lab.2014.140305 pmid: 25651730
[81]   Jiang R, Han Z, Zhuo G, et al. Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Frontiers of Medicine, 2011,5(1):94-100.
doi: 10.1007/s11684-011-0116-z pmid: 21681681
[82]   Purwito P, Wibisono S, Sutjahjo A, et al. Adipose derived mesenchymal stem cells for treatment tertiary failure diabetes mellitus type 2. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2017,31(3):91-95.
[83]   Veres A, Faust A L, Bushnell H L, et al. Charting cellular identity during human in vitro β-cell differentiation. Nature, 2019,569(7756):368-373.
doi: 10.1038/s41586-019-1168-5 pmid: 31068696
[84]   Velazco C L, Song J, Maxwell K G, et al. Acquisition of dynamic function in human stem cell derived β cells. Stem Cell Reports, 2019,12(2):351-365.
doi: 10.1016/j.stemcr.2018.12.012 pmid: 30661993
[1] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[2] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[3] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[4] YUAN Ya-kun,LIU Guang-yang,LIU Yong-jun,XIE Ya-fang,WU Hao. Comparison of Research and Clinical Transformation on Mesenchymal Stem Cells between China and the US[J]. China Biotechnology, 2020, 40(4): 97-107.
[5] CHEN Li-jun,QU Jing-jing,XIANG Charlie. Therapeutic Potentials, Clinical Studies, and Application Prospects of Mesenchymal Stem Cells in 2019 Novel Coronavirus (COVID-19)[J]. China Biotechnology, 2020, 40(11): 43-55.
[6] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[7] Wen-wen SHI,Lei ZHANG. Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation[J]. China Biotechnology, 2018, 38(8): 76-83.
[8] Yan ZHENG,Huan YAO,Ke YANG. SFRP5 Inhibites Osteogenic Differentiation of Human Umbilical Cord-derived Mesenchymal Stem Cells Induced by BMP9[J]. China Biotechnology, 2018, 38(7): 7-13.
[9] Qiu-xia YAN,Yi MA,An HONG. Research Progress of Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) as a New Potential Therapeutic Peptide in Diabetes and Its Complications[J]. China Biotechnology, 2018, 38(1): 62-68.
[10] SUN Yi-ping, WANG Yue, JIN Zhen, WANG Xiao-yan, SUN Lei, ZHANG Xuan, FENG Chong, ZHOU Xiao-hua. Establishment and Phenotype Analysis of SHBG Knockout Mouse Model[J]. China Biotechnology, 2017, 37(8): 39-45.
[11] YUAN Ya-hong, ZHAO Shan-shan, WANG Xiao-li, TENG Zhi-ping, LI Dong-sheng, ZENG Yi. HIV-1 Tat Protein Inhibits the Hematopoiesis Support Function of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2017, 37(6): 1-8.
[12] CAO Jun-jie, LI Ai-fang, WEI Ya-lin, LIAN Jing, TANG Min. Role of Notch Signaling Pathway in Bone Morphogenetic Protein 4-induced Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells and Its Mechanism[J]. China Biotechnology, 2017, 37(4): 48-55.
[13] ZHAO Zheng-de, CHEN Zhen-yin, ZHANG Hui-nan, GONG Jian-ping, XU Shao-dan, LUO Zhong-li. Effects of Self-assembling Peptide Hydrogel Scaffolds for Three-dimensional Culture on Biological Behavior and Capability of Myocardium Differentiation in Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2017, 37(11): 45-51.
[14] MAO Kai-yun, FAN Yue-lei, WANG Yue, LU Jiao, CHEN Da-ming. Development Status and Trend Analysis of Mesenchymal Stem Cells Therapeutic Products[J]. China Biotechnology, 2017, 37(10): 126-135.
[15] ZHANG Qing-fang, LIU Ru-ming, XIAO Jian-hui. Application of Hyaluronic Acid on the Cartilage Differentiation of Mesenchymal Stem Cells[J]. China Biotechnology, 2016, 36(6): 92-99.