Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (4): 94-100    DOI: 10.13523/j.cb.20190412
    
Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells
Xin LI1,Zhong-li ZHAO1,Xiao-tong LUO2,Yang CAO1,Li-chun ZHANG1,Yong-sheng YU1**(),Hai-guo JIN1**()
1 Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling 136100,China
2 Agricultural College, Yan Bian University, Yanji 133002, China
Download: HTML   PDF(428KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Induced pluripotent stem cells(iPSCs) refer to stem cells that are artificially produced by cellular reprogramming, which have similar functions to embryonic stem cells. They can differentiate into all cell types, and avoid the ethical controversy of ESCs and immune rejection after transplantation. They have a broad application prospect.The advances in the in vitro differentiation of male germ cells using iPSCs by different inducers was reviewed, the effect was also investigated. Exploring development mechanisms of germ cells is promising to promote future reproductive and developmental engineering technologies.



Key wordsiPSCs      Male germ cells      Differentiation      Inducers     
Received: 27 September 2018      Published: 08 May 2019
ZTFLH:  Q813.5  
Corresponding Authors: Yong-sheng YU,Hai-guo JIN     E-mail: yuyongsheng2002@163.com;khk1962@126.com
Cite this article:

Xin LI,Zhong-li ZHAO,Xiao-tong LUO,Yang CAO,Li-chun ZHANG,Yong-sheng YU,Hai-guo JIN. Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells. China Biotechnology, 2019, 39(4): 94-100.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190412     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I4/94

Fig.1 Differentiation of iPS into male germ cells
[1]   Wu Y, Li O, He C , et al. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts. Molecular Medicine Reports, 2017,15(6) : 3690-3698.
doi: 10.3892/mmr.2017.6431 pmid: 5436227
[2]   Wernig M, Zhao J P, Pruszak J , et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’ s disease. Proceedings of National Academy of Sciences of the United States of America, 2008,105(15):5856-5861.
doi: 10.1073/pnas.0801677105
[3]   Takahashi K, Tanabe K, Ohnuki M , et al. Induction of pluripotent stem cells from human fibroblasts by defined factors. Cell, 2007,131(5):861-872.
doi: 10.1016/j.cell.2007.11.019
[4]   Imamura M, Aoi T, Tokumasu A , et al. Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes. Molecular Reproduction and Development, 2010,77(9):802-811.
doi: 10.1002/mrd.21223 pmid: 20722049
[5]   Correia C, Serra M, Espinha N , et al. Combining hypoxia and bioreactor hydrodynamics boosts induced pluripotent stem cell differentiation towards cardiomyocytes. Stem Cell Rev, 2014,10(6):786-801.
doi: 10.1007/s12015-014-9533-0 pmid: 25022569
[6]   Schenke-Layland K, Rhodes K E, Angelis E , et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells, 2008,26(6):1537-1546.
doi: 10.1634/stemcells.2008-0033 pmid: 18450826
[7]   Shi Y, Inoue H, Wu J C , et al. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov, 2017,16(2):115-130.
doi: 10.1038/nrd.2016.245 pmid: 27980341
[8]   Hikabe O, Hamazaki N, Nagamatsu G , et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature, 2016,539(7628):299-303.
doi: 10.1038/nature20104 pmid: 27750280
[9]   Cai H, Xia X, Wang L , et al. In vitro and in vivo differentiation of induced pluripotent stem cells into male germ cells. Biochem Biophys Res Commun, 2013,433(3):286-291.
doi: 10.1016/j.bbrc.2013.02.107 pmid: 23524261
[10]   Eguizabal C, Montserrat N, Vassena R , et al. Complete meiosis from human induced pluripotent stem cells. Stem Cells , 2011,29(8):1186-1195.
doi: 10.1002/stem.672 pmid: 21681858
[11]   Imamura M, Hikabe O , Lin Z Y C , et al. Generation of germ cells in vitro in the era of induced pluripotent stem cells. Mol Reprod Dev, 2014,81(1):2-19.
doi: 10.1002/mrd.22259 pmid: 23996404
[12]   Yin X H, Li Y, Li J W , et al. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells. Biochem Biophys Res Commun , 2016,473(3):726-732.
doi: 10.1016/j.bbrc.2015.10.012 pmid: 26456649
[13]   Yamanaka S . A fresh look at iPS cells. Cell, 2009,137(1):13-17.
doi: 10.1016/j.cell.2009.03.034
[14]   Liu S P, Fu R H, Huang Y C , et al. Induced pluripotent stem (iPS) cell research overview. Cell Transplant, 2011,20(1):15-19.
doi: 10.3727/096368910X532828 pmid: 20887681
[15]   Li J, Song W, Pan G , et al. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. J Hematol Oncol, 2014,7(50):1-18.
doi: 10.1186/1756-8722-7-1 pmid: 3884022
[16]   Li Y, Wang X, Feng X , et al. Generation of male germ cells from mouse induced pluripotent stem cells in vitro. Stem Cell Res, 2014,12(2):517-530
doi: 10.1016/j.scr.2013.12.007 pmid: 24463497
[17]   Tan H, Wang J J, Cheng S F , et al. Retinoic acid promotes the proliferation of primordial germ cell-like cells differentiated from mouse skin-derived stem cells in vitro. Theriogenology, 2016,85(3):408-418.
doi: 10.1016/j.theriogenology.2015.09.002 pmid: 26456183
[18]   Niederreither K, Dollé P . Retinoic acid in development: towards an integrated view. Nat Rev Genet, 2008,9(7):541-553.
doi: 10.1038/nrg2340 pmid: 18542081
[19]   Kim J B, Sebastiano V, Wu G , et al. Oct4-induced pluripotency in adult neural stem cells. Cell, 2009,136(3):411-419.
doi: 10.1016/j.cell.2009.01.023 pmid: 19203577
[20]   Koubova J, Hu Y C, Bhattacharyya T , et al. Retinoic acid activates two pathways required for meiosis in mice. PLoS Genet, 2014,10(8):e1004541.
doi: 10.1371/journal.pgen.1004541 pmid: 4125102
[21]   Costa J J, Souza G B, Soares M A , et al. In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells. Histol Histopathol, 2018,33(2):121-132
doi: 10.14670/HH-11-917 pmid: 28691729
[22]   Morita Y, Tilly J L . Segregation of retinoic acid effects on fetal ovarian germ cell mitosis versus apoptosis by requirement for new macromolecular synthesis. Endocrinology, 1999,140(6):2696-2703.
doi: 10.1210/endo.140.6.6826 pmid: 10342860
[23]   Zhang Y, Wang Y, Zuo Q , et al. Selection of the inducer for the differentiation of chicken embryonic stem cells into male germ cells in vitro. PLoS One, 2016,11(10):e0164664.
doi: 10.1371/journal.pone.0164664
[24]   Geijsen N, Horoschak M, Kim K , et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 2004,427(6970):148-154.
[25]   Li P, Hu H, Yang S , et al. Differentiation of induced pluripotent stem cells into male germ cells in vitro through embryoid body formation and retinoic acid or testosterone induction. Biomed Res Int, 2013,2013(1):608728.
doi: 10.1155/2013/608728 pmid: 23509752
[26]   Yang S, Yuan Q, Niu M , et al. BMP4 promotes mouse iPS cell differentiation to male germ cells via Smad1/5, Gata4, Id1 and Id2. Reproduction, 2017,153(2):211-220.
doi: 10.1530/REP-16-0292 pmid: 27864336
[27]   Wozney J M . Overview of bone morphogenetic proteins. Spine, 2002,27(16):2-8.
doi: 10.1097/01.BRS0000020725.01916.7E pmid: 12205411
[28]   He Z . Derivation of male germ cells from induced pluripotent stem (iPS) cells: a novel and crucial source for generating male gametes. Asian J Androl, 2012,14(4):516-517.
doi: 10.1038/aja.2012.44 pmid: 22635161
[29]   Lochab A K, Extavour C G . Bone morphogenetic protein (BMP) signaling in animal reproductive system development and function. Dev Biol, 2017,427(2):258-269.
doi: 10.1016/j.ydbio.2017.03.002 pmid: 28284906
[30]   Ying Y, Liu X M, Marble A , et al. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol, 2000,14(7):1053-1063.
doi: 10.1210/me.14.7.1053 pmid: 10894154
[31]   Ying Y, Qi X, Zhao G Q . Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci USA, 2001,98(14):7858-7862.
doi: 10.1073/pnas.151242798
[32]   Kee K, Gonsalves J M, Clark A T , et al. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev, 2006,15(6):831-837.
doi: 10.1089/scd.2006.15.831 pmid: 17253946
[33]   Panula S, Medrano J V, Kee K , et al. Human germ cell differentiation from fetal-and adult-derived induced pluripotent stem cells. Hum Mol Genet, 2011,20(4):752-762.
doi: 10.1093/hmg/ddq520
[34]   Bucay N, Yebra M, Cirulli V , et al. A novel approach for the derivation of putative primordial germ cells and sertoli cells from human embryonic stem cells. Stem Cells, 2009,27(1):68-77.
doi: 10.1634/stemcells.2007-1018 pmid: 18845765
[35]   Park T S, Galic Z, Conway A E , et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells, 2009,27(4):783-795.
doi: 10.1002/stem.13 pmid: 19350678
[36]   Yu J, Vodyanik M A, Smuga-Otto K , et al. Induced pluripotent stem cell lines derived from human somatic cells .Science, 2007,31(5858)8:1917-1920.
[37]   Hikabe O, Hamazaki N, Nagamattsu G , et al. Reconstitution in vitro of the entire cycle of the mouse female gern line. Nature. 2016,539(7628):299-303.
doi: 10.1038/nature20104 pmid: 27750280
[38]   Hashimoto H, Yuasa S . Testosterone induces cardiomyocyte differentiation from embryonic stem cells. J Mol Cell Cardiol, 2013,62(1):69-71.
doi: 10.1016/j.yjmcc.2013.05.008 pmid: 23711440
[39]   Silva C, Wood J R, Salvador L , et al. Expression profile of male germ cell-associated genes in mouse embryonic stem cell cultures treated with all-trans retinoic acid and testosterone. Mol Reprod Dev, 2009,76(1):11-21.
doi: 10.1002/mrd.20925 pmid: 18425777
[40]   Narenji Sani R, Tajik P, Movahedin M , et al. Effect of follicle stimulating hormone and testosterone on viability rate of cryopreserved spermatogonial stem cell after thawing. Iran J Vet Sci Technol, 2013,5:26-34.
[41]   Tajik P, Sani R N, Moezifar M , et al. Effect of follicle- stimulating hormone and testosterone on colony formation of bovine spermatogonial stem cell. Comp Clin Pathol 2014,23(4):901-906.
doi: 10.1007/s00580-013-1710-z
[42]   Zanganeh B M, Rastegar T, Roudkenar M H , et al. Co-culture of spermatogonial stem cells with sertoli cells in the presence of testosterone and FSH improved differentiation via up-regulation of post meiotic genes. Acta Med Iran, 2013,51(1):1-11.
pmid: 23456578
[43]   Silva C, Wood J R, Salvador L , et al. Expression profile of male germ cell-associated genes in mouse embryonic stem cell cultures treated with all-trans retinoic acid and testosterone. Mol Reprod Dev, 2009,76(1):11-21.
doi: 10.1002/mrd.20925 pmid: 18425777
[44]   Correia S, Alves M R, Cavaco J E , et al. Estrogenic regulation of testicular expression of stem cell factor and c-kit: implications in germ cell survival and male fertility. Fertil Steril, 2014,102(1):299-306.
doi: 10.1016/j.fertnstert.2014.04.009 pmid: 24825426
[45]   Jeong W, Jung S, Bazer F , et al. Stem cell factor-induced AKT cell signaling pathway:effects on porcine trophectoderm and uterine luminal epithelial cells. Gen Comp Endocrinol, 2017,250(1):113-121.
doi: 10.1016/j.ygcen.2017.05.015
[46]   Payer B, Saitou M, Barton S C , et al. Stella is a maternal effect gene required for normal early development in mice. Curr Biol, 2003,13(23):2110-2117.
doi: 10.1016/j.cub.2003.11.026 pmid: 14654002
[47]   Bendall S C, Hughes C, Campbell J L , et al. An enhanced mass spectrometry approach reveals human embryonic stem cell growth factors in culture. Mol Cell Proteomics, 2009,8(3):421-432.
doi: 10.1074/mcp.M800190-MCP200 pmid: 2649806
[48]   West F D, Machacek D W, Boyd N L , et al. Enrichment and differentiation of human germ-like cells mediated by feeder cells and basic fibroblast growth factor signaling. Stem Cells, 2008,26(11):2768-2776.
doi: 10.1634/stemcells.2008-0124 pmid: 18719225
[49]   Bahadorani M, Hosseini S M, Abedi P , et al. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells. Growth Factors, 2015,33(3):181-191.
doi: 10.3109/08977194.2015.1062758 pmid: 26154310
[50]   Wang H, Xiang J, Zhang W , et al. Induction of germ cell-like cells from porcine induced pluripotent stem cells. Sci Rep, 2016,6(1):27256.
doi: 10.1038/srep27256 pmid: 4893677
[51]   Boozarpour S, Matin M M, Momeni-Moghaddam M , et al. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells. Tissue Cell, 2016,48(3):235-241.
doi: 10.1016/j.tice.2016.03.003 pmid: 27026484
[52]   Kang L, Wang J, Zhang Y , et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 2009,5(2):135-138.
doi: 10.1016/j.stem.2009.07.001 pmid: 19631602
[53]   Nayernia K, Lee J H, Drusenheimer N , et al. Derivation of male germ cells from bone marrow stem cells. Laboratory Investigation, 2006,86(7):654-663.
doi: 10.1038/labinvest.3700429
[54]   Dyce P W, Wen L, Li J . In vitro germline potential of stem cells derived from fetal porcine skin. Nature Cell Biology, 2006,8(4):384-390.
doi: 10.1038/ncb1388 pmid: 16565707
[55]   Zhao X Y, Li W, Lü Z , et al. iPS cells produce viable mice through tetraploid complementation. Nature, 2009,461(7260):86-90
doi: 10.1038/nature08267 pmid: 19672241
[56]   Kerkis A, Fonseca S A, Serafim R C , et al. In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes. Cloning Stem Cells, 2007,9(4):535-548.
doi: 10.1089/clo.2007.0031 pmid: 18154514
[57]   Toyooka Y, Tsunekawa N, Akasu R , et al. Embryonic stem cells can form germ cells in vitro. Proceedings of the National Academy of Sciences, 2003,100(20):11457-11462.
doi: 10.1073/pnas.1932826100
[58]   Bowles J, Koopman P . Retinoci acid, meiosis and germ cell fate in mammals. Development, 2007,134(19):3401-3411.
doi: 10.1242/dev.001107
[59]   Bowles J, Knight D, Smith C , et al. Retinoid signaling determines germ cell fate in mice. Science, 2006,312(5773):596-600.
doi: 10.1126/science.1125691
[60]   Pellegrini M, Grimaldi P, Rossi P , et al. Developmental expression of BMP4/ALK3/SAMD5 signalling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. Journal of Cell Science, 2003,116(16):3363-3372.
doi: 10.1242/jcs.00650 pmid: 12857787
[61]   West F D , Roche-Rios M I, Abraham S , et al. KIT ligand and bone morphogenetic protein signaling enhances human embryonic stem cell to germ-like cell differentiation. Human Reproduction, 2010,25(1):168-178.
doi: 10.1093/humrep/dep338 pmid: 19840987
[1] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[2] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[3] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[4] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[5] QIU Dan-dan,LU Cai-xia,DAI Jie-jie. Application of Hepatocyte-like Cells Derived from Induced Pluripotent Stem Cells in HCV Infection Model[J]. China Biotechnology, 2020, 40(11): 67-72.
[6] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[7] ZHU Ying,FAN Meng-tian,LI Ju-qiong,CHEN Bin,ZHANG Meng-hao,WU Jing-hong,SHI Qiong. Effect of Chemokine Receptor CX3CR1 on Osteogenic Differentiation of Human Aortic Valve Interstitial Cells[J]. China Biotechnology, 2019, 39(8): 7-16.
[8] Yu CHENG,Qiong SHI,Li-qin AN,Meng-tian FAN,Gai-gai HUANG,Ya-guang WENG. BMP7 Gene Silencing Inhibits Osteogenic Differentiation of Porcine Arotic Valve Interstitial Cells Induced by Osteogenic Induction Medium[J]. China Biotechnology, 2019, 39(5): 63-71.
[9] Wen-wen SHI,Lei ZHANG. Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation[J]. China Biotechnology, 2018, 38(8): 76-83.
[10] Guang-ran LI,Wei WANG. Research Progress of Small Molecule Compounds in Neural Differentiation of Stem Cells[J]. China Biotechnology, 2018, 38(3): 76-80.
[11] ZHONG Peng-qiang,LIU Bei-zhong,YAO Juan-juan,LIU Dong-dong,YUAN Zhen,LIU Jun-mei,CHEN Min,ZHONG Liang. Knock-down of ACTL6A Promote Differentiation of NB4 Cells via the Notch1 Signaling Pathway[J]. China Biotechnology, 2018, 38(12): 1-6.
[12] Qiong YANG,Ling-hui WANG,Hao GU,Jing-jing DU,Jin-yuan LIU,Shun-hua ZHANG,Li ZHU. The Effect of miR-196a-5p on Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2018, 38(11): 9-17.
[13] Ting AN,Jing JI,Yu-rong WANG,Zhi-gang MA,Gang WANG,Qian LI,Dan YANG,Song-hao ZHANG. Analysis of the Transformation Efficiency and Induced Differentiation of Lilium brownii Scales[J]. China Biotechnology, 2018, 38(1): 25-31.
[14] LI Li-li, WEI Qi-yan, WANG Yan-fang, HE Zhong-mei, GAO Yu-gang, MA Ji-sheng. Research Progress of FGF/FGFR Signaling Regulating Osteoblast Differentiation[J]. China Biotechnology, 2017, 37(6): 107-113.
[15] LIU Hong-xia, SHI Qiong, ZHOU Yi-qing, AN Li-qin, YAN Shu-juan, ZHANG Ru-yi, WENG Ya-guang. Overexpression of miR-155 Inhibits the Osteogenic Differentiation of Mesenchymal Stem Cells C3H10T1/2 Induced by BMP9[J]. China Biotechnology, 2017, 37(5): 9-18.