Please wait a minute...


China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (10): 82-89    DOI: 10.13523/j.cb.20181010
Orginal Article     
Advance in Large-Scale Culture of Hybridoma Cells in Vitro
Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO(),Gui-lin LI
Zhengzhou Autobio Diagnostic Co,LTD,Zhengzhou 450016,China
Download: HTML   PDF(736KB) HTML
Export: BibTeX | EndNote (RIS)      


Monoclonal antibodies have shown great value in the field of biology and medical research. They are new reagents in immunoassays and are the guided weapons for biological therapy. As a diagnostic reagent in vitro, monoclonal antibody can give full play to its advantages, such as good specificity, high sensitivity, and more convenient for quality control, which is conducive to standardization .Traditionally,mouse ascites were used to prepare monoclonal antibodies. Now monoclonal antibodies are also being developed in large-scale cultures of hybridoma cells in vitro. In particular, the needs of monoclonal antibodies in the diagnosis and treatment of diseases have further promoted the development of invitro culture and production techniques for hybridoma cells. Due to the semi-adherent nature of the hybridoma cells, both in suspension and adherent culture, large-scale invitro culture of hybridoma cells can be performed. This article reviews the invitro culture techniques of hybridoma cells, including hollow fiber cell culture system and bioreactor cell culture sysytem, as well as the optimization of different culture methods.

Key wordsHybridoma      Monoclonal antibody      Bioreactor      Hollow fiber     
Received: 28 April 2018      Published: 09 November 2018
ZTFLH:  Q813  
Corresponding Authors: Qiao-hui ZHAO     E-mail:
Cite this article:

Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro. China Biotechnology, 2018, 38(10): 82-89.

URL:     OR

Fig.1 The costs in the stirred-tank bioreactor upstream section.
Fig.2 The cost distribution of operating costs in the hollow fiber bioreactor upstream section.
生物反应器(旋转过滤器) 中空纤维系统(1柱) 中空纤维系统(8柱/批)
中空柱外腔体积 - 70ml 70ml
生物反应器体积 10 L - -
接种密度 105 cells/ml 108 cells 108 cells
最大细胞密度 107 cells/ml 108 cells/ml 108 cells/ml
抗体比生产速率 20pg/cell/d 20pg/cell/d 20pg/cell/d
抗体生产速率 0.2mg/ml/d 400mg/2d 3.2g/2天
生长阶段培养基消耗量 10L 3.75L 30L
生产阶段培养基消耗量 12L/d 2L/d 16L/d
每批培养基总消耗量 265L 110L 880L
收获体积 12L/d 70ml/2d 560ml/2d
每批收获总体积 225L 1.86L 14.9L
抗体浓度 0.17mg/ml 5.7mg/ml 5.7mg/ml
批产能 42.5g 10.6g 85g
批周期 29d/批
60d/批 60d/批
Table 1 MAb cultivation data (per batch) of the stirred-tank bioreactor (str) and hollow fiber bioreactor (HFB)
Fig.3 The cross section of in-culturing hollow fiber system[8]
过程参数变化 效应 参考文献
溶氧 DO%(升高) mAb Qp(升高)
通气(升高) 气泡增多
温度改变(降低) qGrowth rate(下降)
mAb Qp(升高)
接种密度 抗体电荷分布改变 [24]
pH改变(降低) qGrowth rate(下降)
补料 抗体分泌(升高) [20]
非必须氨基酸 抗体分泌(升高),而不影响糖型 [21]
脂肪酸 抗体分泌(升高) [28]
皮质醇 细胞活率(升高)
Table2 Previous studies hat guided process variable selection
[1]   张元兴, 魏明旺, 董志峰 . 杂交瘤细胞的大量培养. 生物工程进展, 1997,17(5):54-60.
[1]   Zhang Y X, Wei M W, Dong Z F . Large scale culture of hybridoma cells. Advances in Environmental Bioengineering, 1997,17(5):54-60.
[2]   辛彦斌, 薛小平, 朱美福 , 等. 杂交瘤细胞体外大量培养研究的进展, 细胞与分子免疫学杂志, 1990,6(2):63-66.
[2]   Xin Y B, Xue X P, Zhu M F , et al. Advances of large-scale culture of hybridoma cells in vitro. Journal of Cellular and Molecular Immunology, 1990,6(2):63-66.
[3]   Carson K L . Flexibility the guiding principle for antibody manufacturing. Nat Biotechnol. 2005,23(9):1054-1058.
doi: 10.1038/nbt0905-1054 pmid: 16151390
[4]   Rodrigues M E, Costa A R, Henriques M , et al. Technological progresses in monoclonal antibody production systems. Biotechnol Prog, 2010,26(2):332-351.
doi: 10.1002/btpr.348 pmid: 20043321
[5]   Heine H, Biselli M, Wandrey C . High cell density cultivation of hybridoma cells:Spin filter vs immobilized culture. Animal Cell Technology:Products from Cells, Cells as Products, 1999, 83-85.
doi: 10.1007/0-306-46875-1_18
[6]   Vermasvuori R, Hurme M . Economic comparison of diagnostic antibody production in perfusion stirred tank and in hollow fiber bioreactor processes. Biotechnology Progress, 2011,27(6):1588-1598.
doi: 10.1002/btpr.676 pmid: 21954092
[7]   李峻城, 姜述德 . 中空纤维细胞培养技术.国外医学:预防. 诊断, 1989 ( 1):1-4.
[7]   Li J C, Jiang S D . Hollow fiber cell culture technology.Foreign Medicine:Prevention. Diagnosis, 1989 ( 1):1-4.
[8]   John J S. 中空纤维细胞培养的新进展. 中国实验室, 2005,4:21-27.
[8]   John J S . New developments in hollow-fiber cell culture. China Laboratory, 2005,4:21-27.
[9]   Jain E, Kumar A . Upstream processes in antibody production:Evaluation of critical parameters, Biotechnology Advances. 2008,26(1):46-72.
doi: 10.1016/j.biotechadv.2007.09.004
[10]   Legazpi L, Laca A, Collado S , et al. Diffusion and inhibition processes in a hollow-fiber membrane bioreactor for hybridoma culture.Development of a mathematical model. Chem Biochem Eng Q, 2016,30(2):213-225.
doi: 10.15255/CABEQ
[11]   Van E R, Adorf M, Sommeren A P , et al. Monitoring of the production of monoclonal antibodies by hybridomas.Part I:Long-term cultivation in hollow fibre bioreactors using serum-free medium. Journal of Biotechnolog, 1991,20(3) : 249-261.
doi: 10.1016/0168-1656(91)90298-A pmid: 1367572
[12]   Jackson L R, Trudel L J, Fox J G , et al. Evaluation of hollow fiber bioreactors as an alternative to murine ascites production for small scale monoclonal antibody production. Journal of Immunological Methods, 1996,189(2):217-231.
doi: 10.1016/0022-1759(95)00251-0 pmid: 8613673
[13]   Takenouchi S, Sugahara T . Lactate dehydrogenase enhances immunoglobulin production by human hybridoma and human peripheral blood lymphocytes, Cytotechnology, 2003,42(3):133-143.
doi: 10.1023/ pmid: 19002935
[14]   Jain E, Kumar A . Upstream processes in antibody production:Evaluation of critical parameters. Biotechnology Advances, 2008,26(1):46-72.
[15]   Ayyildiz-Tamis D, Nalbantsoy A, Elibol M , et al. Effect of operating conditions in production of diagnostic salmonella enteritidis O-antigen-specific monoclonal antibody in different bioreactor systems. Appl Biochem Biotechnol, 2014,172(1):224-236.
doi: 10.1007/s12010-013-0532-4 pmid: 24068476
[16]   Chen Z L, Wu B C, Liu H , et al. Temperature shift as a process optimization step for the production of pro-urokinase by a recombinant Chinese hamster ovary cell line in high-density perfusion culture. J Biosci Bioeng, 2004,97(4):239-243.
doi: 10.1016/S1389-1723(04)70198-X pmid: 16233622
[17]   Ogawa T, Kamihira M, Yoshida H , et al. Effect of dissolved-oxygen concentration on monoclonal-antibody production in hybridoma cell-cultures. J Ferment Bioeng, 1992,74(6):372-378.
doi: 10.1016/0922-338X(92)90034-R
[18]   Trummer E, Fauland K, Seidinger S , et al. Process parameter shifting: Part I.Effect of DOT,pH,and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng, 2006,94(6):1033-1044.
doi: 10.1002/(ISSN)1097-0290
[19]   Abu-Reesh I, Kargi F . Biological responses of hybridoma cells to hydrodynamic shear in an agitated bioreactor. Enzyme Microb Technol, 1991,13(11):913-919.
doi: 10.1016/0141-0229(91)90108-M pmid: 1368002
[20]   Lu F, Toh P C, Burnett I , et al. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development. Biotechnol Bioeng, 2013,110(1):191-205.
doi: 10.1002/bit.24602
[21]   Read E K, Bradley S A, Smitka T A , et al. Fermentanomics informed amino acid supplementation of an antibody producing mammalian cell culture. Biotechnol Prog, 2013,29(3):745-753.
doi: 10.1002/btpr.1728 pmid: 23606649
[22]   Rouiller Y, Perilleux A, Marsaut M , et al. Effect of hydrocortisone on the production and glycosylation of anFc-fusion protein in CHO cell cultures. Biotechnol Prog, 2012,28(3):803-813.
doi: 10.1002/btpr.1530 pmid: 22535835
[23]   Madhavarao C N, Agarabi C D, Wong L , et al. Evaluation of butyrateinduced production of a mannose-6-phosphorylated therapeutic enzyme using parallel bioreactors. Biotechnol Appl Biochem, 2014,61(2):184-192.
doi: 10.1002/bab.1151 pmid: 24033810
[24]   Banerjee A, Ma N N, Ramasubramanyan N . Designing in quality: Approaches to defining the design space for a monoclonal antibodyprocess. Biopharm Int, 2010,23(5):26-40.
[25]   Chee Furng Wong D, Tin Kam Wong K, Tang Goh L , et al. Impact of dynamic online fed-batch strategies on metabolism,productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng, 2005,89(2):164-177.
doi: 10.1002/bit.20317 pmid: 15593097
[26]   Hasegawa H, Wendling J, He F , et al. In vivo crystallization of human IgG in the endoplasmic reticulum of engineered Chinese hamster ovary (CHO) cells. J Biol Chem, 2011,286(22):19917-19931.
doi: 10.1074/jbc.M110.204362 pmid: 3103367
[27]   Handa A, Emery A N, Spier R E . On the evaluation of gasliquid interfacial effects on hybridoma viability in bubble column bioreactors. Developments in Biological Standardization, 1987,66(4):241-253.
doi: 10.1016/0141-0229(89)90097-5 pmid: 3582753
[28]   Butler M, Huzel N . The effect of fatty acids on hybridoma cell growth and antibody productivity in serum-free cultures. Journal of Biotechnology, 1995,39(2):165-173.
doi: 10.1016/0168-1656(95)00017-K
[29]   Agarabi C D, Schiel J E, Lute S C , et al. Bioreactor process parameter screening utilizing a plackett-burman design for a model monoclonal antibody.[J] Pharm Sci. 2015,104(6):1919-1928.
doi: 10.1002/jps.24420 pmid: 25762022
[30]   Zhang L, Shen H, Zhang Y X . Fed-batch culture of hybridoma cells in serum-free medium using an optimized feeding strategy, Journal of Chemical Technology & Biotechnology. 2004,79(2):171-181.
doi: 10.1002/jctb.940
[31]   Jo E C, Park H J, Kim D I , et al. Repeated fed-batch culture of hybridoma cells in nutrient-fortified high-density medium. Biotechnology and Bioengineering, 1993,42(10):1229-1237.
doi: 10.1002/bit.260421013 pmid: 18609672
[32]   郭纪元 . CHO DG44稳定细胞株无血清培养基的研发与优化. 厦门:厦门大学, 2014.
[32]   Guo J Y . Development and optimization of the serum-free medium for CHO DG44 stable cell line. Xiamen:Xiamen University, 2014.
[33]   刘美 . GS-CHO细胞培养工艺优化. 哈尔滨:东北农业大学, 2012.
[33]   Liu M . Process optimization for GS-CHO cells culture. Harbin: Northeast Agricultural University, 2012.
[34]   蒋金龙 . 基于脂类代谢的DHFR-CHO细胞培养过程开发与优化. 上海:华东理工大学, 2015.
doi: 10.15889/j.issn.1002-1302.2016.01.008
[34]   Jiang J L . Process development and optimization for DHFR-CHO cells based on lipid metabolism. Shanghai:East China University of Science and Technology, 2015.
doi: 10.15889/j.issn.1002-1302.2016.01.008
[35]   Xie L, Wang D I . Applications of improved stoichiometric model in medium design and fed-batch cultivation of animal cells in bioreactor. Cytotechnology, 1994,15(1):17-29.
doi: 10.1007/BF00762376 pmid: 7765929
[36]   Xie L, Wang D I . Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies. Biotechnology and Bioengineering, 1994,43(11):1175-1189.
doi: 10.1002/bit.21160 pmid: 18615531
[37]   Xie L, Wang D I . Different medium design concepts and feeding strategies. Biotechnology and Bioengineering, 1993,95(2):271-284.
[38]   Shibuya K, Haga R, Namba M . A serum substitute for fed-batch culturing of hybridoma cells. Cytotechnology, 2008,57(2):187-197.
doi: 10.1007/s10616-008-9155-y pmid: 2553663
[39]   Gek Kee Chua . Development of a low serum medium for the production of monoclonal antibody against congenital adrenal hyperplasia by hybridoma culture. Preparative Biochemistry and Biotechnology, 2016,46(7):679-689.
doi: 10.1080/10826068.2015.1135450 pmid: 26760282
[40]   Cherlet M, Marc A . Stimulation of monoclonal antibody production of hybridoma cells by butyrate: evaluation of a feeding strategy and characterization of cell behaviour. Cytotechnology, 2000,32(1):17-29.
doi: 10.1023/A:1008069523163 pmid: 3449445
[41]   Rokni M, Razavi A R, Shokri F , et al. Enhancement of monoclonal antibody production after single and combination treatment of the hybridoma cells with all-trans retinoic acidand docosahexaenoic acid: An in vitro and in vivo study. International Immunopharmacology. 2018,59:295-300.
doi: 10.1016/j.intimp.2018.03.008 pmid: 29677631
[42]   Konno Y, Aoki M, Takagishi M , et al. Enhancement of antibody production by the addition of coenzyme-Q (10). Cytotechnology, 2011,63(2):163-170.
doi: 10.1007/s10616-010-9330-9 pmid: 3080474
[1] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[2] JIN Lu,ZHOU Hang,CAO Yun,WANG Zhou-shou,CAO Rong-yue. Research on Applications of High-Throughput Perfusion Models in Bioprocessing Development[J]. China Biotechnology, 2020, 40(8): 63-73.
[3] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[4] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[5] LIANG Zhen-xin,LIU Fang,ZHANG wei,LIU Qing-you,LI Li. The Preparation and Validation of p185 erb B2 Human-mouse Chimeric Antibody ChAb26 Transgenic Mice Mammary Gl and Bioreactor[J]. China Biotechnology, 2019, 39(8): 40-51.
[6] JIANG Yi-fan,JIA Yu,Wang Long,WANG Zhi-ming. The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture[J]. China Biotechnology, 2019, 39(8): 95-103.
[7] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[8] Yu-lei GUO,Liang TANG,Rui-qiang SUN,You LI,Yi-jun CHEN. High-Throughput Micro Bioreactor Development for Biopharmaceuticals[J]. China Biotechnology, 2018, 38(8): 69-75.
[9] Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV[J]. China Biotechnology, 2018, 38(7): 67-74.
[10] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[11] Kai-yun MAO,Yue-lei FAN,Heng-zhe WANG,Da-ming CHEN. Market Competition Pattern of Global PD-1/PD-L1 Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 103-115.
[12] WANG Yun-long, ZHAO Er-xia, LI Yu-lin. Expression, Purification and Identification of Thymidine Kinase 1 Recombinant Protein[J]. China Biotechnology, 2017, 37(9): 15-22.
[13] WU Meng-ling, ZHOU Jia-wang, DU Jun. Development and Application of A Double Monoclonal Antibody Sandwich ELISA for the Assay of Nodal[J]. China Biotechnology, 2017, 37(3): 51-57.
[14] LI Min, WU Ri-wei. The Market Overview of Monoclonal Antibodies in Both Domestic and Abroad[J]. China Biotechnology, 2017, 37(3): 106-114.
[15] LIN You-hong, CHENG Xia-ying, YAN Yi-wen, LIANG Zong-suo, YANG Zong-qi. Expression and Optimization Strategy of Recombinant Proteins in Chlamydomonas Chloroplast[J]. China Biotechnology, 2017, 37(10): 118-125.