Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (9): 83-92    DOI: 10.13523/j.cb.2204015
    
Research Advancement of CRISPR/Cas9 Directed Homologous Recombination Efficiency Improvements in Mammal Genome Editing
FENG Shuang1,WANG Chun-wei1,SU Xiao-hu1,2,**()
1. School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
2. State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010020, China
Download: HTML   PDF(848KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The genome editing system can bring the precise modification of DNA or RNA, which provides great help for the development of life sciences. The CRISPR/Cas9 could induce double or single strand DNA damage at target sites. The damages are repaired by non-homologous end joining (NHEJ) without donor template or homologous recombination (HR) with donor template in cells. The HR-based genome editing strategy is common to generate precise modification of DNA. However, NHEJ plays a dominant role in mammal DNA repair. To improve the HR efficiency,the researchers designed multiple strategies, which include genome editing system optimization and DNA repair pathway regulation. The related research achievements from the aspects of DNA damage repair pathway, Cas9 mutation selection, sgRNA design, donor template design, functional regulation of DNA repair pathway related proteins, improvement of donor template recruitment efficiency, cell cycle regulation and improvement of editing cell survival efficiency were reviewed. A one-size-fits-all HR promotion strategy has not yet been developed. The case-specific strategies of HR-based are required during relative research. This review can provide theoretical reference for improving the efficiency of CRISPR/Cas9-mediated HR in animal genome editing and provide help for animal gene function analysis, gene therapy and economic animal breeding through gene editing.



Key wordsCRISPR/Cas9      Homologous recombination      Efficiency improvement      Mammal genome editing     
Received: 08 April 2022      Published: 10 October 2022
ZTFLH:  Q78  
Corresponding Authors: Xiao-hu SU     E-mail: 13947144670@139.com
Cite this article:

FENG Shuang,WANG Chun-wei,SU Xiao-hu. Research Advancement of CRISPR/Cas9 Directed Homologous Recombination Efficiency Improvements in Mammal Genome Editing. China Biotechnology, 2022, 42(9): 83-92.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2204015     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I9/83

Fig.1 DNA repair pathway regulation to improve HR efficiency
[1]   Nambiar T S, Baudrier L, Billon P, et al. CRISPR-based genome editing through the lens of DNA repair. Molecular Cell, 2022, 82(2): 348-388.
doi: 10.1016/j.molcel.2021.12.026 pmid: 35063100
[2]   Carroll D. Genome engineering with targetable nucleases. Annual Review of Biochemistry, 2014, 83: 409-439.
doi: 10.1146/annurev-biochem-060713-035418 pmid: 24606144
[3]   Kan Y N, Ruis B, Takasugi T, et al. Mechanisms of precise genome editing using oligonucleotide donors. Genome Research, 2017, 27(7): 1099-1111.
doi: 10.1101/gr.214775.116 pmid: 28356322
[4]   Chang H H Y, Pannunzio N R, Adachi N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biology, 2017, 18(8): 495-506.
doi: 10.1038/nrm.2017.48 pmid: 28512351
[5]   Shrivastav M, de Haro L P, Nickoloff J A. Regulation of DNA double-strand break repair pathway choice. Cell Research, 2008, 18(1): 134-147.
doi: 10.1038/cr.2007.111 pmid: 18157161
[6]   Takata M, Sasaki M S, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. The EMBO Journal, 1998, 17(18): 5497-5508.
doi: 10.1093/emboj/17.18.5497
[7]   Arnoult N, Correia A, Ma J, et al. Regulation of DNA repair pathway choice in S and G 2 phases by the NHEJ inhibitor CYREN. Nature, 2017, 549(7673): 548-552.
doi: 10.1038/nature24023
[8]   Tran N T, Bashir S, Li X, et al. Enhancement of precise gene editing by the association of Cas 9 with homologous recombination factors. Frontiers in Genetics, 2019, 10: 365.
doi: 10.3389/fgene.2019.00365
[9]   Denes C E, Cole A J, Aksoy Y A, et al. Approaches to enhance precise CRISPR/Cas9-mediated genome editing. International Journal of Molecular Sciences, 2021, 22(16): 8571.
doi: 10.3390/ijms22168571
[10]   Fu Y W, Dai X Y, Wang W T, et al. Dynamics and competition of CRISPR-Cas 9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucleic Acids Research, 2021, 49(2): 969-985.
doi: 10.1093/nar/gkaa1251
[11]   Anzalone A V, Koblan L W, Liu D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 2020, 38(7): 824-844.
doi: 10.1038/s41587-020-0561-9 pmid: 32572269
[12]   Collias D, Beisel C L. CRISPR technologies and the search for the PAM-free nuclease. Nature Communications, 2021, 12(1): 555.
doi: 10.1038/s41467-020-20633-y pmid: 33483498
[13]   Chen J S, Dagdas Y S, Kleinstiver B P, et al. Enhanced proofreading governs CRISPR-Cas 9 targeting accuracy. Nature, 2017, 550(7676): 407-410.
doi: 10.1038/nature24268
[14]   Kato-Inui T, Takahashi G, Hsu S, et al. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Research, 2018, 46(9): 4677-4688.
doi: 10.1093/nar/gky264 pmid: 29672770
[15]   Kleinstiver B P, Pattanayak V, Prew M S, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490-495.
doi: 10.1038/nature16526
[16]   Idoko-Akoh A, Taylor L, Sang H M, et al. High fidelity CRISPR/Cas 9 increases precise monoallelic and biallelic editing events in primordial germ cells. Scientific Reports, 2018, 8(1): 15126.
doi: 10.1038/s41598-018-33244-x pmid: 30310080
[17]   Robertson L, Pederick D, Piltz S, et al. Expanding the RNA-guided endonuclease toolkit for mouse genome editing. The CRISPR Journal, 2018, 1: 431-439.
doi: 10.1089/crispr.2018.0050
[18]   Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY),2013, 339(6121): 819-823.
[19]   Wang Y C, Zhao J Y, Duan N N, et al. Paired CRISPR/Cas9 nickases mediate efficient site-specific integration of F9 into rDNA locus of mouse ESCs. International Journal of Molecular Sciences, 2018, 19(10): 3035.
doi: 10.3390/ijms19103035
[20]   Chen F Q, Ding X, Feng Y M, et al. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Nature Communications, 2017, 8: 14958.
doi: 10.1038/ncomms14958 pmid: 28387220
[21]   Acharya S, Mishra A, Paul D, et al. Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(42): 20959-20968.
[22]   Hsu P D, Scott D A, Weinstein J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013, 31(9): 827-832.
doi: 10.1038/nbt.2647 pmid: 23873081
[23]   Heigwer F, Kerr G, Boutros M. E-CRISP: fast CRISPR target site identification. Nature Methods, 2014, 11(2): 122-123.
doi: 10.1038/nmeth.2812 pmid: 24481216
[24]   da Eun Jang, Lee J Y, Lee J H, et al. Multiple sgRNAs with overlapping sequences enhance CRISPR/Cas9-mediated knock-in efficiency. Experimental & Molecular Medicine, 2018, 50(4): 1-9.
[25]   Farboud B, Meyer B J. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics, 2015, 199(4): 959-971.
doi: 10.1534/genetics.115.175166 pmid: 25695951
[26]   Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 2014, 32(6): 577-582.
doi: 10.1038/nbt.2909 pmid: 24770324
[27]   Feng S Y, Wang Z L, Li A F, et al. Strategies for high-efficiency mutation using the CRISPR/Cas system. Frontiers in Cell and Developmental Biology, 2022, 9: 803252.
doi: 10.3389/fcell.2021.803252
[28]   San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annual Review of Biochemistry, 2008, 77: 229-257.
doi: 10.1146/annurev.biochem.77.061306.125255 pmid: 18275380
[29]   Kan Y N, Ruis B, Lin S, et al. The mechanism of gene targeting in human somatic cells. PLoS Genetics, 2014, 10(4): e1004251.
doi: 10.1371/journal.pgen.1004251
[30]   Gaj T, Staahl B T, Rodrigues G M C, et al. Targeted gene knock-in by homology-directed genome editing using Cas 9 ribonucleoprotein and AAV donor delivery. Nucleic Acids Research, 2017, 45(11): e98.
doi: 10.1093/nar/gkx154
[31]   Zhang J P, Li X L, Li G H, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biology, 2017, 18(1): 35.
doi: 10.1186/s13059-017-1164-8
[32]   Song F, Stieger K. Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Molecular Therapy - Nucleic Acids, 2017, 7: 53-60.
doi: 10.1016/j.omtn.2017.02.006
[33]   Ye L P, Wang C K, Hong L J, et al. Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discovery, 2018, 4: 46.
doi: 10.1038/s41421-018-0049-7 pmid: 30062046
[34]   Wen W, Cheng X X, Fu Y W, et al. High-level precise knockin of iPSCs by simultaneous reprogramming and genome editing of human peripheral blood mononuclear cells. Stem Cell Reports, 2018, 10(6): 1821-1834.
doi: S2213-6711(18)30181-4 pmid: 29754960
[35]   Dokshin G A, Ghanta K S, Piscopo K M, et al. Robust genome editing with short single-stranded and long, partially single-stranded DNA donors in Caenorhabditis elegans. Genetics, 2018, 210(3): 781-787.
doi: 10.1534/genetics.118.301532
[36]   Ehrke-Schulz E, Schiwon M, Leitner T, et al. CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes. Scientific Reports, 2017, 7(1): 17113.
doi: 10.1038/s41598-017-17180-w pmid: 29215041
[37]   Gao J, Bergmann T, Zhang W L, et al. Viral vector-based delivery of CRISPR/Cas9 and donor DNA for homology-directed repair in an in vitro model for canine hemophilia B. Molecular Therapy Nucleic Acids, 2019, 14: 364-376.
doi: 10.1016/j.omtn.2018.12.008
[38]   Gutierrez-Triana J A, Tavhelidse T, Thumberger T, et al. Efficient single-copy HDR by 5' modified long dsDNA donors. eLife, 2018, 7: e39468.
doi: 10.7554/eLife.39468
[39]   Liang X Q, Potter J, Kumar S, et al. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. Journal of Biotechnology, 2017, 241: 136-146.
doi: S0168-1656(16)31611-X pmid: 27845164
[40]   Richardson C D, Ray G J, DeWitt M A, et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nature Biotechnology, 2016, 34(3): 339-344.
doi: 10.1038/nbt.3481 pmid: 26789497
[41]   Wang K K, Tang X C, Liu Y, et al. Efficient generation of orthologous point mutations in pigs via CRISPR-assisted ssODN-mediated homology-directed repair. Molecular Therapy - Nucleic Acids, 2016, 5(11): e396.
doi: 10.1038/mtna.2016.101
[42]   Wu Y X, Zhou H, Fan X Y, et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research, 2015, 25(1): 67-79.
doi: 10.1038/cr.2014.160 pmid: 25475058
[43]   Lanza D G, Gaspero A, Lorenzo I, et al. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biology, 2018, 16(1): 69.
doi: 10.1186/s12915-018-0529-0 pmid: 29925370
[44]   Bollen Y, Post J, Koo B K, et al. How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Research, 2018, 46(13): 6435-6454.
doi: 10.1093/nar/gky571 pmid: 29955892
[45]   Paulsen B S, Mandal P K, Frock R L, et al. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing. Nature Biomedical Engineering, 2017, 1(11): 878-888.
doi: 10.1038/s41551-017-0145-2 pmid: 31015609
[46]   Canny M D, Moatti N, Wan L C K, et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nature Biotechnology, 2018, 36(1): 95-102.
doi: 10.1038/nbt.4021 pmid: 29176614
[47]   Jayavaradhan R, Pillis D M, Goodman M, et al. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nature Communications, 2019, 10(1): 2866.
doi: 10.1038/s41467-019-10735-7 pmid: 31253785
[48]   Shrivastav M, Miller C A, de Haro L P, et al. DNA-PKcs and ATM co-regulate DNA double-strand break repair. DNA Repair, 2009, 8(8): 920-929.
doi: 10.1016/j.dnarep.2009.05.006 pmid: 19535303
[49]   Riesenberg S, Chintalapati M, Macak D, et al. Simultaneous precise editing of multiple genes in human cells. Nucleic Acids Research, 2019, 47(19): e116.
doi: 10.1093/nar/gkz669
[50]   Yan Q, Xu K, Xing J N, et al. Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure. Scientific Reports, 2016, 6: 38970.
doi: 10.1038/srep38970 pmid: 27941919
[51]   Sun Y S, Yan N N, Mu L, et al. sgRNA-shRNA structure mediated SNP site editing on porcine IGF2 gene by CRISPR/StCas9. Frontiers in Genetics, 2019, 10: 347.
doi: 10.3389/fgene.2019.00347
[52]   Kiani S, Chavez A, Tuttle M, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nature Methods, 2015, 12(11): 1051-1054.
doi: 10.1038/nmeth.3580 pmid: 26344044
[53]   Charpentier M, Khedher A H Y, Menoret S, et al. CtIP fusion to Cas 9 enhances transgene integration by homology-dependent repair. Nature Communications, 2018, 9(1): 1133.
doi: 10.1038/s41467-018-03475-7 pmid: 29556040
[54]   Baumann P, West S C. Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends in Biochemical Sciences, 1998, 23(7): 247-251.
pmid: 9697414
[55]   Yang H, Ren S L, Yu S Y, et al. Methods favoring homology-directed repair choice in response to CRISPR/Cas 9 induced-double strand breaks. International Journal of Molecular Sciences, 2020, 21(18): 6461.
doi: 10.3390/ijms21186461
[56]   Davis L, Maizels N. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(10): E924-E932.
[57]   Davis L, Maizels N. Two distinct pathways support gene correction by single-stranded donors at DNA nicks. Cell Reports, 2016, 17(7): 1872-1881.
doi: S2211-1247(16)31469-3 pmid: 27829157
[58]   Rees H A, Yeh W H, Liu D R. Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nature Communications, 2019, 10(1): 2212.
doi: 10.1038/s41467-019-09983-4 pmid: 31101808
[59]   Bhargava R, Onyango D O, Stark J M. Regulation of single-strand annealing and its role in genome maintenance. Trends in Genetics, 2016, 32(9): 566-575.
doi: S0168-9525(16)30068-3 pmid: 27450436
[60]   Shao S M, Ren C H, Liu Z T, et al. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52. The International Journal of Biochemistry & Cell Biology, 2017, 92: 43-52.
doi: 10.1016/j.biocel.2017.09.012
[61]   Huang J, Huen M S Y, Kim H, et al. RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nature Cell Biology, 2009, 11(5): 592-603.
doi: 10.1038/ncb1865 pmid: 19396164
[62]   Nambiar T S, Billon P, Diedenhofen G, et al. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nature Communications, 2019, 10(1): 3395.
doi: 10.1038/s41467-019-11105-z pmid: 31363085
[63]   Balasubramanian N, Bai P, Buchek G, et al. Physical interaction between the Herpes simplex virus type 1 exonuclease, UL12, and the DNA double-strand break-sensing MRN complex. Journal of Virology, 2010, 84(24): 12504-12514.
doi: 10.1128/JVI.01506-10 pmid: 20943970
[64]   Reuven N, Adler J, Broennimann K, et al. Recruitment of DNA repair MRN complex by intrinsically disordered protein domain fused to Cas 9 improves efficiency of CRISPR-mediated genome editing. Biomolecules, 2019, 9(10): 584.
doi: 10.3390/biom9100584
[65]   Srivastava M, Nambiar M, Sharma S, et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell, 2012, 151(7): 1474-1487.
doi: 10.1016/j.cell.2012.11.054 pmid: 23260137
[66]   Sun W L, Liu H, Yin W H, et al. Strategies for enhancing the homology-directed repair efficiency of CRISPR-Cas systems. The CRISPR Journal, 2022, 5(1): 7-18.
doi: 10.1089/crispr.2021.0039
[67]   Chu V T, Weber T, Wefers B, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology, 2015, 33(5): 543-548.
doi: 10.1038/nbt.3198 pmid: 25803306
[68]   Hu Z, Shi Z Y, Guo X G, et al. Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell & Bioscience, 2018, 8: 12.
[69]   Maruyama T, Dougan S K, Truttmann M C, et al. Increasing the efficiency of precise genome editing with CRISPR-Cas 9 by inhibition of nonhomologous end joining. Nature Biotechnology, 2015, 33(5): 538-542.
doi: 10.1038/nbt.3190 pmid: 25798939
[70]   Shy B R, MacDougall M S, Clarke R, et al. Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells. Nucleic Acids Research, 2016, 44(16): 7997-8010.
doi: 10.1093/nar/gkw685 pmid: 27484482
[71]   Song J, Yang D S, Xu J, et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nature Communications, 2016, 7: 10548.
doi: 10.1038/ncomms10548 pmid: 26817820
[72]   Aksoy Y A, Nguyen D T, Chow S, et al. Chemical reprogramming enhances homology-directed genome editing in zebrafish embryos. Communications Biology, 2019, 2: 198.
doi: 10.1038/s42003-019-0444-0 pmid: 31925033
[73]   Zhang Y B, Zhang Z W, Ge W. An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing. The Journal of Biological Chemistry, 2018, 293(17): 6611-6622.
doi: 10.1074/jbc.RA117.001080
[74]   Li G L, Zhang X W, Zhong C L, et al. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Scientific Reports, 2017, 7: 8943.
doi: 10.1038/s41598-017-09306-x pmid: 28827551
[75]   Gerlach M, Kraft T, Brenner B, et al. Efficient knock-in of a point mutation in porcine fibroblasts using the CRISPR/Cas9- GMNN fusion gene. Genes, 2018, 9(6): 296.
doi: 10.3390/genes9060296
[76]   Leahy J J J, Golding B T, Griffin R J, et al. Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening of chromenone libraries. Bioorganic & Medicinal Chemistry Letters, 2004, 14(24): 6083-6087.
doi: 10.1016/j.bmcl.2004.09.060
[77]   Robert F, Barbeau M, Éthier S, et al. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Medicine, 2015, 7(1): 93.
doi: 10.1186/s13073-015-0215-6
[78]   Azhagiri M K K, Babu P, Venkatesan V, et al. Homology-directed gene-editing approaches for hematopoietic stem and progenitor cell gene therapy. Stem Cell Research & Therapy, 2021, 12(1): 500.
[79]   Harnor S J, Brennan A, Cano C. Targeting DNA-dependent protein kinase for cancer therapy. ChemMedChem, 2017, 12(12): 895-900.
doi: 10.1002/cmdc.201700143 pmid: 28423228
[80]   Jayathilaka K, Sheridan S D, Bold T D, et al. A chemical compound that stimulates the human homologous recombination protein RAD51. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(41): 15848-15853.
[81]   Pinder J, Salsman J, Dellaire G. Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Research, 2015, 43(19): 9379-9392.
doi: 10.1093/nar/gkv993
[82]   de Brabander M, de Mey J, Joniau M, et al. Ultrastructural immunocytochemical distribution of tubulin in cultured cells treated with microtubule inhibitors. Cell Biology International Reports, 1977, 1(2): 177-183.
pmid: 343926
[83]   Lin S, Staahl B T, Alla R K, et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife, 2014, 3: e04766.
doi: 10.7554/eLife.04766
[84]   Vassilev L T, Tovar C, Chen S Q, et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(28): 10660-10665.
[85]   Vassilev L T. Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle (Georgetown, Tex), 2006, 5(22): 2555-2556.
doi: 10.4161/cc.5.22.3463
[86]   Lomova A, Clark D N, Campo-Fernandez B, et al. Improving gene editing outcomes in human hematopoietic stem and progenitor cells by temporal control of DNA repair. Stem Cells(Dayton, Ohio), 2019, 37(2): 284-294.
[87]   Parmee E R, Ok H O, Candelore M R, et al. Discovery of L-755, 507: a subnanomolar human β3 adrenergic receptor agonist. Bioorganic & Medicinal Chemistry Letters, 1998, 8(9): 1107-1112.
doi: 10.1016/S0960-894X(98)00170-X
[88]   Yu C, Liu Y X, Ma T H, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 2015, 16(2): 142-147.
doi: 10.1016/j.stem.2015.01.003 pmid: 25658371
[89]   Ktistakis N T, Linden M E, Roth M G. Action of brefeldin A blocked by activation of a pertussis-toxin-sensitive G protein. Nature, 1992, 356(6367): 344-346.
doi: 10.1038/356344a0
[90]   Srinivasan A, Gold B. Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs. Future Medicinal Chemistry, 2012, 4(9): 1093-1111.
doi: 10.4155/fmc.12.58 pmid: 22709253
[91]   Zhang J Q, Zhu Z S, Yue W, et al. Establishment of CRISPR/Cas9-mediated knock-in system for porcine cells with high efficiency. Applied Biochemistry and Biotechnology, 2019, 189(1): 26-36.
doi: 10.1007/s12010-019-02984-5 pmid: 30859452
[92]   Li X L, Li G H, Fu J, et al. Highly efficient genome editing via CRISPR-Cas 9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Research, 2018, 46(19): 10195-10215.
doi: 10.1093/nar/gky804
[93]   Roche P J R, Gytz H, Hussain F, et al. Double-stranded biotinylated donor enhances homology-directed repair in combination with Cas9 monoavidin in mammalian cells. The CRISPR Journal, 2018, 1: 414-430.
doi: 10.1089/crispr.2018.0045
[94]   Aird E J, Lovendahl K N, St Martin A, et al. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Communications Biology, 2018, 1: 54.
doi: 10.1038/s42003-018-0054-2 pmid: 30271937
[95]   Savić N, Ringnalda F C, Berk C, et al. In vitro generation of CRISPR-Cas9 complexes with covalently bound repair templates for genome editing in mammalian cells. Bio-protocol, 2019, 9(1): e3136.
[96]   Anzalone A V, Randolph P B, Davis J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149-157.
doi: 10.1038/s41586-019-1711-4
[97]   Zhi S Y, Chen Y X, Wu G L, et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Molecular Therapy, 2022, 30(1): 283-294.
doi: 10.1016/j.ymthe.2021.07.011
[98]   Zhang J P, Yang Z X, Zhang F, et al. HDAC inhibitors improve CRISPR-mediated HDR editing efficiency in iPSCs. Science China Life Sciences, 2021, 64(9): 1449-1462.
doi: 10.1007/s11427-020-1855-4
[99]   Supharattanasitthi W, Carlsson E, Sharif U, et al. CRISPR/Cas9-mediated one step bi-allelic change of genomic DNA in iPSCs and human RPE cells in vitro with dual antibiotic selection. Scientific Reports, 2019, 9(1): 174.
doi: 10.1038/s41598-018-36740-2 pmid: 30655567
[100]   Jensen K T, Fløe L, Petersen T S, et al. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas 9 gene editing efficiency. FEBS Letters, 2017, 591(13): 1892-1901.
doi: 10.1002/1873-3468.12707
[101]   Chen X Y, Rinsma M, Janssen J M, et al. Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Research, 2016, 44(13): 6482-6492.
doi: 10.1093/nar/gkw524 pmid: 27280977
[102]   Chen X Y, Liu J, Janssen J M, et al. The chromatin structure differentially impacts high-specificity CRISPR-Cas9 nuclease strategies. Molecular Therapy Nucleic Acids, 2017, 8: 558-563.
doi: 10.1016/j.omtn.2017.08.005
[103]   Daer R M, Cutts J P, Brafman D A, et al. The impact of chromatin dynamics on Cas9-mediated genome editing in human cells. ACS Synthetic Biology, 2017, 6(3): 428-438.
doi: 10.1021/acssynbio.5b00299 pmid: 27783893
[104]   Uusi-Mäkelä M I E, Barker H R, Bäuerlein C A, et al. Chromatin accessibility is associated with CRISPR-Cas 9 efficiency in the zebrafish (Danio rerio). PLoS One, 2018, 13(4): e0196238.
doi: 10.1371/journal.pone.0196238
[105]   Ding X, Seebeck T, Feng Y M, et al. Improving CRISPR-Cas9 genome editing efficiency by fusion with chromatin-modulating peptides. The CRISPR Journal, 2019, 2: 51-63.
doi: 10.1089/crispr.2018.0036
[106]   Guo Q, Mintier G, Ma-Edmonds M, et al. ‘Cold shock’ increases the frequency of homology directed repair gene editing in induced pluripotent stem cells. Scientific Reports, 2018, 8(1): 2080.
doi: 10.1038/s41598-018-20358-5 pmid: 29391533
[107]   Tan W F, Carlson D F, Lancto C A, et al. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16526-16531.
[108]   Maikova A, Zalutskaya Z, Lapina T, et al. The HSP70 chaperone machines of Chlamydomonas are induced by cold stress. Journal of Plant Physiology, 2016, 204: 85-91.
doi: S0176-1617(16)30144-4 pmid: 27543887
[109]   Kang G Y, Kim E H, Lee H J, et al. Heat shock factor 1, an inhibitor of non-homologous end joining repair. Oncotarget, 2015, 6(30): 29712-29724.
doi: 10.18632/oncotarget.5073
[1] QU Li-li,DING Xue-feng,CAI Yan-fei,LU Chen,LI Hua-zhong,JIN Jian,CHEN Yun. Discovery of Stable Expression Sites in CHO Genome NW-003614092.1[J]. China Biotechnology, 2022, 42(6): 12-19.
[2] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[3] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[4] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[5] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[6] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[7] FAN Bin,CHEN Huan,SONG Wan-ying,CHEN Guang,WANG Gang. Advances in Lactic Acid Bacteria Gene Modification[J]. China Biotechnology, 2020, 40(6): 84-92.
[8] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[9] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[10] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[11] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[12] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[13] WANG Gang,XIAO Yu,LI Yi,LIU Zhi-gang,PEI Cheng-li,WU Li-da,LI Yan-li,WANG Xi-qing,ZHANG Ming-lei,CHEN Guang,TONG Yi. Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid[J]. China Biotechnology, 2019, 39(8): 66-73.
[14] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[15] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.