Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (9): 67-82    DOI: 10.13523/j.cb.2203060
    
Construction of Riboregulator in the Application of Point-of-care Testing
LIANG Shu-rui,LI Jiao-jiao,QI Hao**()
Synthetic Biology Research Platform, Tianjin Collaborative Innovation Center of Chemical Science and Engineering,Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(5464KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Ongoing efforts in synthetic biology are focused on the design of reusable and modular fragments that demonstrate well-characterized behaviors and functionalities in biological systems. In the cell-free protein expression system, riboregulators are developed as an important sensing element in point-of-care testing, which can change their structure through the induction of target molecules, thereby regulating the expression of downstream genes. Different types of riboregulators and their action mechanisms are systematically introduced, including traditional riboregulators, toehold switch, toehold repressor, three-way junction repressor, small transcription activating RNA, and riboswitch. The main processes of constructing riboregulators are described in detail: designing with computers, testing gene expression, and analyzing the functional structure. Finally, the applications of in vitro point-of-care testing (POCT) based on riboregulators are summarized, mainly including pathogen nucleic acid detection based on toehold switch and small molecule detection mediated by riboswitch. The characteristics, challenges, and development tendencies of POCT in the cell-free system are discussed and summarized. In conclusion, the construction and application of riboregulators have opened up a new direction in the biosensing field. This article is expected to provide some helpful insight into the development of new riboregulators and POCT tools.



Key wordsRiboregulator      Toehold switch      Riboswitch      Cell-free protein synthesis      Point-of-care testing (POCT)     
Received: 26 March 2022      Published: 10 October 2022
ZTFLH:  Q78  
Corresponding Authors: Hao QI     E-mail: haoq@tju.edu.cn
Cite this article:

LIANG Shu-rui,LI Jiao-jiao,QI Hao. Construction of Riboregulator in the Application of Point-of-care Testing. China Biotechnology, 2022, 42(9): 67-82.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2203060     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I9/67

Fig.1 Riboregulator located in 5'-UTR
Fig.2 Action mechanism of traditional riboregulator
Fig.3 Riboregulators based on the different action mechanisms (a) Toehold switch (b) Toehold repressor (c) 3WJ repressor (d) STAR
Fig.4 Regulation mechanism of riboswitch (a) Activation (b) Repression (c) Ribozyme cleavage
分类 名称 调节类型 动态范围
(激活/抑制倍数)
设计来源 参考文献
一代核糖核酸调节子 RR10、RR12 翻译激活 8~19 从头设计 [9]
RAJ11、RAJ12 翻译激活 11.2~26.7 细菌sRNA、人工结构 [32]
RR42、RR12y 翻译激活 70~200 RR10、RR12 [33]
二代核糖核酸调节子 Toehold switch 翻译激活 >400 从头设计 [10]
功能拓展的调节子 STARs 转录激活 94~9 000 转录衰减 [19,21]
3WJ repressor 翻译抑制 43 从头设计 [16]
Toehold repressor 翻译抑制 122 从头设计 [16]
Table 1 Characteristics of riboregulators
Fig.5 Design, test and analysis cycle of engineered riboregulators
Fig.6 Cell-free sensors based on paper
Fig.7 POCT based on toehold switch
Fig.8 SNIPR design principles
Fig.9 Point-of-care testing based on riboswitch
无细胞系统 开关类型 检测对象 报告蛋白 检测限 检测时间 参考文献
PURE Toehold switch Zika virus LacZ 2.8 fmol/L 3 h [60]
PURE Toehold switch Dengue virus LacZ 5.23 nmol/L 3 h [61]
PURE Toehold switch Norovirus LacZα/LacZω 270 zmol/L 3~6 h [62]
E. coli Toehold switch RSV LacZ 91 amol/L 2.5 h [63]
N. Tabassum leaf STAR Plant pathogen C23DO 4.4 pmol/L 2.5 h [64]
E. coli Toehold switch Shiga toxin gene LacZ 5 nmol/L 1 h [65]
PURE Riboswitch Theophylline LacZ 1 mmol/L 35 min [73]
PURE Toehold switch SARS-CoV-2 GFP 1 800 copies 2 h [75]
E. coli Toehold switch SARS-CoV-2 NanoLuc 10 nmol/L 0.5 h [76]
PURE Toehold switch Gut bacteria GFP 30 amol/L 3~5 h [78]
PURE SNIPR SNV LacZ 10 fmol/L 1 h [79]
E. coli Riboswitch Fluoride C23DO 2 ppm 1 h [81]
Table 2 Cell-free biosensors with riboregulators
[1]   Patel S, Panchasara H, Braddick D, et al. Synthetic small RNAs: current status, challenges, and opportunities. Journal of Cellular Biochemistry, 2018, 119(12): 9619-9639.
doi: 10.1002/jcb.27252 pmid: 30010218
[2]   Rossetti M, del Grosso E, Ranallo S, et al. Programmable RNA-based systems for sensing and diagnostic applications. Analytical and Bioanalytical Chemistry, 2019, 411(19): 4293-4302.
doi: 10.1007/s00216-019-01622-7 pmid: 30734852
[3]   Tietze L, Lale R. Importance of the 5' regulatory region to bacterial synthetic biology applications. Microbial Biotechnology, 2021, 14(6): 2291-2315.
doi: 10.1111/1751-7915.13868 pmid: 34171170
[4]   Steitz J A, Jakes K. How ribosomes select initiator regions in mRNA:base pair formation between the 3' Terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(12): 4734-4738.
[5]   de Smit M H, van Duin J. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. Journal of molecular biology, 1994, 244(2): 144-150.
pmid: 7966326
[6]   Duval M, Simonetti A, Caldelari I, et al. Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. Biochimie, 2015, 114: 18-29.
[7]   Huang X, Zhang X N, Zhou Y F, et al. Directed evolution of the 5'-untranslated region of the phoA gene in Escherichia coli simultaneously yields a stronger promoter and a stronger Shine-Dalgarno sequence. Biotechnology Journal, 2006, 1(11): 1275-1282.
pmid: 17109483
[8]   Bonde M T, Pedersen M, Klausen M S, et al. Predictable tuning of protein expression in bacteria. Nature Methods, 2016, 13(3): 233-236.
doi: 10.1038/nmeth.3727 pmid: 26752768
[9]   Isaacs F J, Dwyer D J, Ding C, et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 2004, 22(7): 841-847.
pmid: 15208640
[10]   Green A A, Silver P A, Collins J J, et al. Toehold switches: de-novo-designed regulators of gene expression. Cell, 2014, 159(4): 925-939.
doi: 10.1016/j.cell.2014.10.002 pmid: 25417166
[11]   Simmel F C, Yurke B, Singh H R. Principles and applications of nucleic acid strand displacement reactions. Chemical Reviews, 2019, 119(10): 6326-6369.
doi: 10.1021/acs.chemrev.8b00580 pmid: 30714375
[12]   Chau T H T, Mai D H A, Pham D N, et al. Developments of riboswitches and toehold switches for molecular detection-biosensing and molecular diagnostics. International Journal of Molecular Sciences, 2020, 21(9): 3192.
doi: 10.3390/ijms21093192
[13]   Kittle J D, Simons R W, Lee J, et al. Insertion sequence IS10 anti-sense pairing initiates by an interaction between the 5' end of the target RNA and a loop in the anti-sense RNA. Journal of Molecular Biology, 1989, 210(3): 561-572.
pmid: 2482367
[14]   Mutalik V K, Qi L, Guimaraes J C, et al. Rationally designed families of orthogonal RNA regulators of translation. Nature Chemical Biology, 2012, 8(5): 447-454.
doi: 10.1038/nchembio.919 pmid: 22446835
[15]   Peters G, Maertens J, Lammertyn J, et al. Exploring of the feature space of de novo developed post-transcriptional riboregulators. PLoS Computational Biology, 2018, 14(8): e1006170.
doi: 10.1371/journal.pcbi.1006170
[16]   Kim J, Zhou Y, Carlson P D, et al. De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nature Chemical Biology, 2019, 15(12): 1173-1182.
doi: 10.1038/s41589-019-0388-1 pmid: 31686032
[17]   Stanton B C, Nielsen A A K, Tamsir A, et al. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nature Chemical Biology, 2014, 10(2): 99-105.
doi: 10.1038/nchembio.1411 pmid: 24316737
[18]   Brantl S, Wagner E G H. Antisense RNA-mediated transcriptional attenuation: an in vitro study of plasmid pT181. Molecular Microbiology, 2000, 35(6): 1469-1482.
pmid: 10760147
[19]   Chappell J, Takahashi M K, Lucks J B. Creating small transcription activating RNAs. Nature Chemical Biology, 2015, 11(3): 214-220.
doi: 10.1038/nchembio.1737 pmid: 25643173
[20]   Meyer S, Chappell J, Sankar S, et al. Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies. Biotechnology and Bioengineering, 2016, 113(1): 216-225.
doi: 10.1002/bit.25693 pmid: 26134708
[21]   Chappell J, Westbrook A, Verosloff M, et al. Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nature Communications, 2017, 8(1): 1051.
doi: 10.1038/s41467-017-01082-6 pmid: 29051490
[22]   Hollands K, Proshkin S, Sklyarova S, et al. Riboswitch control of Rho-dependent transcription termination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(14): 5376-5381.
[23]   Haller A, Rieder U, Aigner M, et al. Conformational capture of the SAM-II riboswitch. Nature Chemical Biology, 2011, 7(6): 393-400.
doi: 10.1038/nchembio.562 pmid: 21532598
[24]   Cheah M T, Wachter A, Sudarsan N, et al. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature, 2007, 447(7143): 497-500.
doi: 10.1038/nature05769
[25]   Grundy F J, Henkin T M. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell, 1993, 74(3): 475-482.
pmid: 8348614
[26]   Serganov A, Nudler E. A decade of riboswitches. Cell, 2013, 152(1-2): 17-24.
doi: 10.1016/j.cell.2012.12.024 pmid: 23332744
[27]   Kumar D, An C I, Yokobayashi Y. Conditional RNA interference mediated by allosteric ribozyme. Journal of the American Chemical Society, 2009, 131(39): 13906-13907.
doi: 10.1021/ja905596t pmid: 19788322
[28]   Jaffrey S R. RNA-based fluorescent biosensors for detecting metabolites in vitro and in living cells. Advances in Pharmacology, 2018, 82: 187-203.
[29]   Paige J S, Wu K Y, Jaffrey S R. RNA mimics of green fluorescent protein. Science, 2011, 333(6042): 642-646.
doi: 10.1126/science.1207339 pmid: 21798953
[30]   Filonov G S, Moon J D, Svensen N, et al. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. Journal of the American Chemical Society, 2014, 136(46): 16299-16308.
doi: 10.1021/ja508478x pmid: 25337688
[31]   Sefah K, Shangguan D H, Xiong X L, et al. Development of DNA aptamers using cell-SELEX. Nature Protocols, 2010, 5(6): 1169-1185.
doi: 10.1038/nprot.2010.66 pmid: 20539292
[32]   Rodrigo G, Landrain T E, Jaramillo A. De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38): 15271-15276.
[33]   Callura J M, Cantor C R, Collins J J. Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(15): 5850-5855.
[34]   Chappell J, Watters K E, Takahashi M K, et al. A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Current Opinion in Chemical Biology, 2015, 28: 47-56.
doi: 10.1016/j.cbpa.2015.05.018 pmid: 26093826
[35]   Lee Y J, Moon T S. Design rules of synthetic non-coding RNAs in bacteria. Methods, 2018, 143: 58-69.
doi: S1046-2023(17)30338-9 pmid: 29309838
[36]   Zuker M. On finding all suboptimal foldings of an RNA molecule. Science, 1989, 244(4900): 48-52.
pmid: 2468181
[37]   Busch A, Richter A S, Backofen R. Intarna: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics, 2008, 24(24): 2849-2856.
doi: 10.1093/bioinformatics/btn544 pmid: 18940824
[38]   Zadeh J N, Steenberg C D, Bois J S, et al. Nupack: analysis and design of nucleic acid systems. Journal of Computational Chemistry, 2011, 32(1): 170-173.
doi: 10.1002/jcc.21596 pmid: 20645303
[39]   Proctor J R, Meyer I M. COFOLD : an RNA secondary structure prediction method that takes co-transcriptional folding into account. Nucleic Acids Research, 2013, 41(9): e102.
doi: 10.1093/nar/gkt174
[40]   Rodríguez-Serrano A F, Hsing I M. 110th anniversary: engineered ribonucleic acid control elements as biosensors for in vitro diagnostics. Industrial & Engineering Chemistry Research, 2019, 58(37): 17174-17181.
doi: 10.1021/acs.iecr.9b03963
[41]   Wu M J, Andreasson J O L, Kladwang W, et al. Automated design of diverse stand-alone riboswitches. ACS Synthetic Biology, 2019, 8(8): 1838-1846.
doi: 10.1021/acssynbio.9b00142 pmid: 31298841
[42]   Valeri J A, Collins K M, Ramesh P, et al. Sequence-to-function deep learning frameworks for engineered riboregulators. Nature Communications, 2020, 11(1): 5058.
doi: 10.1038/s41467-020-18676-2 pmid: 33028819
[43]   Angenent-Mari N M, Garruss A S, Soenksen L R, et al. A deep learning approach to programmable RNA switches. Nature Communications, 2020, 11(1): 5057.
doi: 10.1038/s41467-020-18677-1 pmid: 33028812
[44]   Findeiβ S, Etzel M, Will S, et al. Design of artificial riboswitches as biosensors. Sensors (Basel, Switzerland), 2017, 17(9): 1990.
doi: 10.3390/s17091990
[45]   Senoussi A, Lee Tin Wah J, Shimizu Y, et al. Quantitative characterization of translational riboregulators using an in vitro transcription-translation system. ACS Synthetic Biology, 2018, 7(5): 1269-1278.
doi: 10.1021/acssynbio.7b00387 pmid: 29617125
[46]   Perez J G, Stark J C, Jewett M C. Cell-free synthetic biology: engineering beyond the cell. Cold Spring Harbor Perspectives in Biology, 2016, 8(12): a023853.
doi: 10.1101/cshperspect.a023853
[47]   Lynch S A, Desai S K, Sajja H K, et al. A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chemistry & Biology, 2007, 14(2): 173-184.
doi: 10.1016/j.chembiol.2006.12.008
[48]   Kirchner M, Schorpp K, Hadian K, et al. An in vivo high-throughput screening for riboswitch ligands using a reverse reporter gene system. Scientific Reports, 2017, 7(1): 7732.
doi: 10.1038/s41598-017-07870-w pmid: 28798404
[49]   Silverman A D, Karim A S, Jewett M C. Cell-free gene expression: an expanded repertoire of applications. Nature Reviews Genetics, 2020, 21(3): 151-170.
doi: 10.1038/s41576-019-0186-3 pmid: 31780816
[50]   Sun Z Z, Yeung E, Hayes C A, et al. Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synthetic Biology, 2014, 3(6): 387-397.
doi: 10.1021/sb400131a
[51]   Ayoubi-Joshaghani M H, Dianat-Moghadam H, Seidi K, et al. Cell-free protein synthesis: the transition from batch reactions to minimal cells and microfluidic devices. Biotechnology and Bioengineering, 2020, 117(4): 1204-1229.
doi: 10.1002/bit.27248 pmid: 31840797
[52]   Hu C Y, Takahashi M K, Zhang Y, et al. Engineering a functional small RNA negative autoregulation network with model-guided design. ACS Synthetic Biology, 2018, 7(6): 1507-1518.
doi: 10.1021/acssynbio.7b00440 pmid: 29733627
[53]   Kim J, Quijano J F, Kim J, et al. Synthetic logic circuits using RNA aptamer against T 7 RNA polymerase. Biotechnology Journal, 2022, 17(3): e2000449.
[54]   Dwidar M, Seike Y, Kobori S, et al. Programmable artificial cells using histamine-responsive synthetic riboswitch. Journal of the American Chemical Society, 2019, 141(28): 11103-11114.
doi: 10.1021/jacs.9b03300 pmid: 31241330
[55]   Espah Borujeni A, Mishler D M, Wang J Z, et al. Automated physics-based design of synthetic riboswitches from diverse RNA aptamers. Nucleic Acids Research, 2016, 44(1): 1-13.
doi: 10.1093/nar/gkv1289 pmid: 26621913
[56]   Tabuchi T, Yokobayashi Y. Cell-free riboswitches. RSC Chemical Biology, 2021, 2(5): 1430-1440.
doi: 10.1039/d1cb00138h pmid: 34704047
[57]   Spitale R C, Crisalli P, Flynn R A, et al. RNA SHAPE analysis in living cells. Nature Chemical Biology, 2013, 9(1): 18-20.
doi: 10.1038/nchembio.1131 pmid: 23178934
[58]   Aviran S, Pachter L. Rational experiment design for sequencing-based RNA structure mapping. RNA (New York, N Y), 2014, 20(12): 1864-1877.
[59]   Watters K E, Abbott T R, Lucks J B. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq. Nucleic Acids Research, 2016, 44(2): e12.
doi: 10.1093/nar/gkv879
[60]   Pardee K, Green A A, Takahashi M K, et al. Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell, 2016, 165(5): 1255-1266.
doi: S0092-8674(16)30505-0 pmid: 27160350
[61]   Suvanasuthi R, Chimnaronk S, Promptmas C. 3D printed hydrophobic barriers in a paper-based biosensor for point-of-care detection of dengue virus serotypes. Talanta, 2022, 237: 122962.
doi: 10.1016/j.talanta.2021.122962
[62]   Ma D, Shen L H, Wu K Y, et al. Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synthetic Biology (Oxford, England), 2018, 3(1): ysy018.
[63]   Cao M C, Sun Q L, Zhang X, et al. Detection and differentiation of respiratory syncytial virus subgroups A and B with colorimetric toehold switch sensors in a paper-based cell-free system. Biosensors and Bioelectronics, 2021, 182: 113173.
doi: 10.1016/j.bios.2021.113173
[64]   Verosloff M, Chappell J, Perry K L, et al. PLANT-dx: a molecular diagnostic for point-of-use detection of plant pathogens. ACS Synthetic Biology, 2019, 8(4): 902-905.
doi: 10.1021/acssynbio.8b00526 pmid: 30790518
[65]   Zhang Y, Steppe P L, Kazman M W, et al. Point-of-care analyte quantification and digital readout via lysate-based cell-free biosensors interfaced with personal glucose monitors. ACS Synthetic Biology, 2021, 10(11): 2862-2869.
doi: 10.1021/acssynbio.1c00282 pmid: 34672518
[66]   Chau T H T, Lee E Y. Development of cell-free platform-based toehold switch system for detection of IP-10 mRNA, an indicator for acute kidney allograft rejection diagnosis. Clinica Chimica Acta, 2020, 510: 619-624.
doi: S0009-8981(20)30427-7 pmid: 32860784
[67]   Gui Q Y, Lawson T, Shan S Y, et al. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors (Basel, Switzerland), 2017, 17(7): 1623.
doi: 10.3390/s17071623
[68]   Yu L, Wu S S, Hao X W, et al. Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. Clinical Chemistry, 2020, 66(7): 975-977.
doi: 10.1093/clinchem/hvaa102 pmid: 32315390
[69]   Pardee K, Green A A, Ferrante T, et al. Paper-based synthetic gene networks. Cell, 2014, 159(4): 940-954.
doi: 10.1016/j.cell.2014.10.004 pmid: 25417167
[70]   Smith M T, Berkheimer S D, Werner C J, et al. Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage. BioTechniques, 2014, 56(4): 186-193.
doi: 10.2144/000114158
[71]   Yang J Z, Cui Y T, Cao Z, et al. Strategy exploration for developing robust lyophilized cell-free systems. Biotechnology Notes, 2021, 2: 44-50.
doi: 10.1016/j.biotno.2021.08.004
[72]   Hunt J P, Yang S O, Wilding K M, et al. The growing impact of lyophilized cell-free protein expression systems. Bioengineered, 2017, 8(4): 325-330.
doi: 10.1080/21655979.2016.1241925 pmid: 27791452
[73]   Nguyen P Q, Soenksen L R, Donghia N M, et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nature Biotechnology, 2021, 39(11): 1366-1374.
doi: 10.1038/s41587-021-00950-3 pmid: 34183860
[74]   de Puig H, Bosch I, Collins J J, et al. Point-of-care devices to detect zika and other emerging viruses. Annual Review of Biomedical Engineering, 2020, 22: 371-386.
doi: 10.1146/annurev-bioeng-060418-052240 pmid: 32501770
[75]   Köksaldi I C, Köse S, Ahan R E, et al. SARS-CoV-2 detection with de novo-designed synthetic riboregulators. Analytical Chemistry, 2021, 93(28): 9719-9727.
doi: 10.1021/acs.analchem.1c00886
[76]   Hunt J P, Zhao E L, Free T J, et al. Towards detection of SARS-CoV-2 RNA in human saliva: a paper-based cell-free toehold switch biosensor with a visual bioluminescent output. New Biotechnology, 2022, 66: 53-60.
doi: 10.1016/j.nbt.2021.09.002
[77]   Park S, Lee J W. Detection of coronaviruses using RNA toehold switch sensors. International Journal of Molecular Sciences, 2021, 22(4): 1772.
doi: 10.3390/ijms22041772
[78]   Takahashi M K, Tan X, Dy A J, et al. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nature Communications, 2018, 9(1): 3347.
doi: 10.1038/s41467-018-05864-4 pmid: 30131493
[79]   Hong F, Ma D, Wu K Y, et al. Precise and programmable detection of mutations using ultraspecific riboregulators. Cell, 2020, 180(5): 1018-1032, e16.
doi: S0092-8674(20)30155-0 pmid: 32109416
[80]   Drachuk I, Harbaugh S, Chávez J L, et al. Improving the activity of DNA-encoded sensing elements through confinement in silk microcapsules. ACS Applied Materials & Interfaces, 2020, 12(43): 48329-48339.
[81]   Thavarajah W, Silverman A D, Verosloff M S, et al. Point-of-use detection of environmental fluoride via a cell-free riboswitch-based biosensor. ACS Synthetic Biology, 2020, 9(1): 10-18.
doi: 10.1021/acssynbio.9b00347 pmid: 31829623
[82]   Jung J K, Alam K K, Verosloff M S, et al. Cell-free biosensors for rapid detection of water contaminants. Nature Biotechnology, 2020, 38(12): 1451-1459.
doi: 10.1038/s41587-020-0571-7
[83]   盛树悦, 陈悦, 张兴梅, 等. 核糖开关及其在抗菌药物方面的研究进展. 生物技术通报, 2017, 33(1): 114-119.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.012
[83]   Sheng S Y, Chen Y, Zhang X M, et al. Research progresses on riboswitches and their applications in antimicrobials. Biotechnology Bulletin, 2017, 33(1): 114-119.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.012
[84]   Panchal V, Brenk R. Riboswitches as drug targets for antibiotics. Antibiotics (Basel, Switzerland), 2021, 10(1): 45.
[85]   Cui Z L, Johnston W A, Alexandrov K. Cell-free approach for non-canonical amino acids incorporation into polypeptides. Frontiers in Bioengineering and Biotechnology, 2020, 8: 1031.
doi: 10.3389/fbioe.2020.01031 pmid: 33117774
[86]   Sharpes C E, McManus J B, Blum S M, et al. Assessment of colorimetric reporter enzymes in the PURE system. ACS Synthetic Biology, 2021, 10(11): 3205-3208.
doi: 10.1021/acssynbio.1c00360 pmid: 34723497
[87]   Zhang L Y, Guo W, Lu Y. Advances in cell-free biosensors: principle, mechanism, and applications. Biotechnology Journal, 2020, 15(9): e2000187.
[88]   Wen K Y, Cameron L, Chappell J, et al. A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples. ACS Synthetic Biology, 2017, 6(12): 2293-2301.
doi: 10.1021/acssynbio.7b00219
[89]   Matsuura H, Ujiie K, Duyen T T M, et al. Development of a paper-based luminescence bioassay for therapeutic monitoring of aminoglycosides: a proof-of-concept study. Applied Biochemistry and Biotechnology, 2019, 189(3): 798-809.
doi: 10.1007/s12010-019-03048-4 pmid: 31119530
[90]   Carr A R, Dopp J L, Wu K Y, et al. Toward mail-in-sensors for SARS-CoV-2 detection: interfacing gel switch resonators with cell-free toehold switches. ACS Sensors, 2022, 7(3): 806-815.
doi: 10.1021/acssensors.1c02450 pmid: 35254055
[91]   Boyd M A, Kamat N P. Designing artificial cells towards a new generation of biosensors. Trends in Biotechnology, 2021, 39(9): 927-939.
doi: 10.1016/j.tibtech.2020.12.002 pmid: 33388162
[1] GUO Yan-tong,LIU Zhong-ming,ZHANG Hai-yan,ZHANG Bao. Molecular Diagnostic POCT Technology and Its Application in Emerging Infectious Diseases[J]. China Biotechnology, 2022, 42(9): 50-57.
[2] WANG Xue, QUAN Chun-shan, WANG Jian-hua, FAN Sheng-di. The Influence of Different Cell Disruption Methods on the Activity of the Extract in Cell-free Protein Synthesis System[J]. China Biotechnology, 2011, 31(01): 46-50.
[3] . Synthesis and assembly of multiplex riboswitches in vitro[J]. China Biotechnology, 2010, 30(01): 0-.