Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (9): 50-57    DOI: 10.13523/j.cb.2204057
    
Molecular Diagnostic POCT Technology and Its Application in Emerging Infectious Diseases
GUO Yan-tong1,2,LIU Zhong-ming1,ZHANG Hai-yan1,**(),ZHANG Bao2,**()
1. PLA Southern Theater Command General Hospital, Guangzhou 510010, China
2. BSL-3 Laboratory(Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research,School of Public Health, Southern Medical University, Guangzhou 510515, China
Download: HTML   PDF(2186KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The development and application of molecular point-of-care (POCT) technology has been noticed in recent years because of its high sensitivity, fast analysis speed, small size, and low detection cost. The development and application of molecular POCT technology is of great significance for protecting human life and health and coping with the threat of emerging and sudden infectious diseases. In this paper, several emerging molecular POCT technologies in the past five years, focusing on describing the latest research progress, and their application prospects were introduced. The advantages and challenges of molecular POCT were discussed, as well as the technical strategies to improve its detection sensitivity and selectivity.



Key wordsPoint-of-care testing (POCT)      Molecular diagnostics      Emerging infectious diseases      Biosafety     
Received: 22 April 2022      Published: 10 October 2022
ZTFLH:  R446  
Corresponding Authors: Hai-yan ZHANG,Bao ZHANG     E-mail: zhanghaiyan1998@126.com;zhang20051005@126.com
Cite this article:

GUO Yan-tong,LIU Zhong-ming,ZHANG Hai-yan,ZHANG Bao. Molecular Diagnostic POCT Technology and Its Application in Emerging Infectious Diseases. China Biotechnology, 2022, 42(9): 50-57.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2204057     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I9/50

Fig.1 Schematics of the i-Genbox[9] (a) A tilted view of the i-Genbox (b) A backside view of the i-Genbox (c) A side view of the i-Genbox (d) The LAMP chip is designed with 7 chambers that are covered by an adhesive flm in both sides
Fig.2 Preparation of the ECL biosensor for the detection of miRNA-155 based on a paper-based BPE[16]
Fig.3 Layer-by-layer assembly of the wearable devices[21]
Fig.4 Automated CRISPR microfluidic chip for Ebola virus detection[24] (a) Design of the CRISPR microfluidic chip (b) Blow up of design of the fluidic layer (c) Open (left) and closed (right) states of a microvalve
Fig.5 Filtration-assisted magnetofluidic blood-to-PCR[25] (a) Filtration-assisted magnetofluidic blood-to-PCR workflow (b) 2-Axis magnet arm and PCR reaction tank
设备 种类 制造商 病原体 评价 来源
GeneXpert 微型PCR仪 Cepheid SARS-CoV-2 敏感度与特异度均为100%,检出限为250 copies/mL,反应耗时120 min [31]
FilmArray® RP2.1 微型PCR仪 BioFire SARS-CoV-2 与RT-qPCR的检测结果一致性很高,检出限为50 copies/mL,反应耗时60 min [32]
AGS8830 微型PCR仪 杭州安誉 SARS-CoV-2 无需核酸提取,检出限为500 copies/mL,反应耗时40 min [33]
Cobas Liat 气压式微流体设备 Roche SARS-CoV-2 与RT-qPCR的检测结果一致性为98.6%,反应耗时20 min [34]
GenePOC Carba 微流体设备 Meridian Bioscience 产碳青霉烯酶
的肠杆菌
无需核酸提取,总敏感度为100%,高于XpertCarba-R的96.4%, 反应耗时70 min [35]
ID NOW INAA设备 Abbott SARS-CoV-2 与RT-qPCR相比敏感度为85.1%,特异度为99.7%,阳性预测值和阴性预测值分别为88.5%和99.6%,反应耗时5~13 min [36]
Alere i INAA设备 Alere 甲流/乙流病毒 与多重RT-PCR相比,甲/乙流敏感度为97.7% 和96.3%,特异度均为100%,耗时15 min [37]
Table 1 Commercial molecular POCT devices for pathogen detection
技术名称 检测对象 样品用量
/μL
评价 来源
基于智能手机的RT-LAMP反应POCT SARS-CoV-2 RNA 20 免核酸提取,反应耗时30 min,测试结果与传统RT-PCR仪结果一致 [38]
基于智能手机的超级三明治电化学生物传感器(纳米金颗粒标记的捕获探针+Au@SCX8-RGO-TB纳米材料) SARS-CoV-2 RNA 10 需要核酸提取,实现了对各种临床咽拭子样本中SARS-CoV-2样本的灵敏、准确、快速检测,阳性检出率为88.2%,而RT-qPCR法为70.59% [39]
基于3D打印的便携POCT仪器 ZIKV RNA 100 RNA自动提取由3D打印机完成,整个ZIKV检测在27~30 min内完成 [40]
基于LAMP的手驱动微流体芯片 沙门氏菌DNA 2 一种手指驱动DNA提取,荧光成像肉眼可视,快速便捷的POCT检测平台 [41]
基于LAMP的微流体芯片 疱疹病毒DNA 200 需要DNA提取,反应耗时30 min左右 [42]
转化纳米粒子的侧向流动检测(upconversion nanoparticle-based lateral flowassays, UCNP-LFAs) 乙肝病毒DNA 200 需要核酸提取,智能手机作为阅读器,检测核酸的荧光强度低于金标准 [43]
柔性纳米株电化学传感器 沙门氏菌DNA 200 针对食源性疾病病原体,需核酸提取,提供便携、低成本、可靠的POCT检测平台 [44]
基于智能手机平台LFA检测 SARS-CoV-2 RNA 140 免RNA提取,智能手机进行控制、数据处理与分析 [45]
基于LAMP的纳米放大比色法 SARS-CoV-2 RNA 4 免RNA提取,检测的准确性、敏感度和特异度分别大于98.4%、96.6%和100% [46]
螺旋环介导等温扩增(helical loop mediated isothermal amplification,HAMP) MERS RNA 2 需RNA提取,反应耗时75 min,采用羟基纳普特霍尔蓝(hydroxy naphthol blue,HNB)作为染色指标进行视觉分析 [47]
逆转录绝热等温PCR 登革热病毒 RNA 5 需核酸提取,一种快速、特异、灵敏的POCT检测系统,可用于登革热病毒感染的常规诊断 [48]
重组酶聚合酶扩增反应 EBOV RNA 10 检测耗时20 min,以PT-PCR为金标准,检测EBOV的敏感度为97%,特异度为97% [49]
Table 2 Example of molecular POCT diagnosis in emerging infectious diseases
[1]   Zarei M. Advances in point-of-care technologies for molecular diagnostics. Biosensors and Bioelectronics, 2017, 98: 494-506.
doi: S0956-5663(17)30473-6 pmid: 28728010
[2]   Wang Y, Yu L, Kong X, et al. Application of nanodiagnostics in point-of-care tests for infectious diseases. Int J Nanomedicine, 2017, 12: 4789-4803.
doi: 10.2147/IJN.S137338
[3]   Moerner W E, Shechtman Y, Wang Q. Single-molecule spectroscopy and imaging over the decades. Faraday Discussions, 2015, 184: 9-36.
doi: 10.1039/c5fd00149h pmid: 26616210
[4]   Heo J H, Cho H H, Lee J W, et al. Achromatic-chromatic colorimetric sensors for on-off type detection of analytes. The Analyst, 2014, 139(24): 6486-6493.
doi: 10.1039/C4AN01645A
[5]   Bahadır E B, Sezgintürk M K. Electrochemical biosensors for hormone analyses. Biosensors and Bioelectronics, 2015, 68: 62-71.
doi: S0956-5663(14)01008-2 pmid: 25558874
[6]   Liu J J, Geng Z X, Fan Z Y, et al. Point-of-care testing based on smartphone: the current state-of-the-art (2017-2018). Biosensors and Bioelectronics, 2019, 132: 17-37.
doi: S0956-5663(19)30132-0 pmid: 30851493
[7]   Geng Z X, Zhang X, Fan Z Y, et al. Recent progress in optical biosensors based on smartphone platforms. Sensors (Basel, Switzerland), 2017, 17(11): 2449.
doi: 10.3390/s17112449
[8]   Hutchison J R, Erikson R L, Sheen A M, et al. Reagent-free and portable detection of Bacillus anthracis spores using a microfluidic incubator and smartphone microscope. The Analyst, 2015, 140(18): 6269-6276.
doi: 10.1039/C5AN01304F
[9]   Nguyen H Q, Nguyen V D, van Nguyen H, et al. Quantification of colorimetric isothermal amplification on the smartphone and its open-source app for point-of-care pathogen detection. Scientific Reports, 2020, 10: 15123.
doi: 10.1038/s41598-020-72095-3 pmid: 32934342
[10]   Oh S J, Park B H, Choi G, et al. Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device. Lab on a Chip, 2016, 16(10): 1917-1926.
doi: 10.1039/c6lc00326e pmid: 27112702
[11]   Nguyen H V, Nguyen V D, Lee E Y, et al. Point-of-care genetic analysis for multiplex pathogenic bacteria on a fully integrated centrifugal microdevice with a large-volume sample. Biosensors and Bioelectronics, 2019, 136: 132-139.
doi: S0956-5663(19)30326-4 pmid: 31078871
[12]   Xu H, Xia A Y, Wang D D, et al. An ultraportable and versatile point-of-care DNA testing platform. Science Advances, 2020, 6(17): eaaz7445.
doi: 10.1126/sciadv.aaz7445
[13]   Pollock N R, Rolland J P, Kumar S, et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Science Translational Medicine, 2012, 4(152): 152ra129.
[14]   Mandal N, Dutta S, Gupta A, et al. Paper-based sensors for point-of-care kidney function monitoring. IEEE Sensors Journal, 2020, 20(17): 9644-9651.
doi: 10.1109/JSEN.2020.2990231
[15]   Chan C W, Parker K, Tesic V, et al. Analytical and clinical evaluation of the automated elecsys anti-SARS-CoV-2 antibody assay on the Roche cobas e602 analyzer. American Journal of Clinical Pathology, 2020, 154(5): 620-626.
doi: 10.1093/ajcp/aqaa155 pmid: 32814955
[16]   Wang F F, Fu C P, Huang C, et al. Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155. Biosensors & Bioelectronics, 2020, 150: 111917.
doi: 10.1016/j.bios.2019.111917
[17]   Dincer C, Bruch R, Kling A, et al. Multiplexed point-of-care testing - xPOCT. Trends in Biotechnology, 2017, 35(8): 728-742.
doi: S0167-7799(17)30062-8 pmid: 28456344
[18]   Kumar S, Rai P, Sharma J G, et al. PEDOT: PSS/PVA-nanofibers-decorated conducting paper for cancer diagnostics. Advanced Materials Technologies, 2016, 1(4): 1600056.
doi: 10.1002/admt.201600056
[19]   Tur-García E L, Davis F, Collyer S D, et al. Novel flexible enzyme laminate-based sensor for analysis of lactate in sweat. Sensors and Actuators B: Chemical, 2017, 242: 502-510.
doi: 10.1016/j.snb.2016.11.040
[20]   Dossi N, Toniolo R, Impellizzieri F, et al. A paper-based platform with a pencil-drawn dual amperometric detector for the rapid quantification of ortho-diphenols in extravirgin olive oil. Analytica Chimica Acta, 2017, 950: 41-48.
doi: S0003-2670(16)31322-8 pmid: 27916128
[21]   Nguyen P Q, Soenksen L R, Donghia N M, et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nature Biotechnology, 2021, 39(11): 1366-1374.
doi: 10.1038/s41587-021-00950-3 pmid: 34183860
[22]   Zhu H L, Fohlerová Z, Pekárek J, et al. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosensors and Bioelectronics, 2020, 153: 112041.
doi: 10.1016/j.bios.2020.112041
[23]   Sinha M, Mack H, Coleman T P, et al. A high-resolution digital DNA melting platform for robust sequence profiling and enhanced genotype discrimination. SLAS Technology, 2018, 23(6): 580-591.
doi: 10.1177/2472630318769846 pmid: 29652558
[24]   Qin P W, Park M, Alfson K J, et al. Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a. ACS Sensors, 2019, 4(4): 1048-1054.
doi: 10.1021/acssensors.9b00239 pmid: 30860365
[25]   Srisomwat C, Teengam P, Chuaypen N, et al. Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection. Sensors and Actuators B: Chemical, 2020, 316: 128077.
doi: 10.1016/j.snb.2020.128077
[26]   Trick A Y, Ngo H T, Nambiar A H, et al. Filtration-assisted magnetofluidic cartridge platform for HIV RNA detection from blood. Lab on a Chip, 2022, 22(5): 945-953.
doi: 10.1039/d1lc00820j pmid: 35088790
[27]   Shan C, Xie X P, Barrett A D T, et al. Zika virus: diagnosis, therapeutics, and vaccine. ACS Infectious Diseases, 2016, 2(3): 170-172.
doi: 10.1021/acsinfecdis.6b00030 pmid: 27623030
[28]   Kost G J. Molecular and point-of-care diagnostics for Ebola and new threats: national POCT policy and guidelines will stop epidemics. Expert Review of Molecular Diagnostics, 2018, 18(7): 657-673.
doi: 10.1080/14737159.2018.1491793 pmid: 29933717
[29]   Pang J X, Chia P Y, Lye D C, et al. Progress and challenges towards point-of-care diagnostic development for dengue. Journal of Clinical Microbiology, 2017, 55(12): 3339-3349.
doi: 10.1128/JCM.00707-17 pmid: 28904181
[30]   Wang C, Liu M, Wang Z F, et al. Point-of-care diagnostics for infectious diseases: from methods to devices. Nano Today, 2021, 37: 101092.
doi: 10.1016/j.nantod.2021.101092
[31]   Tsang H F, Leung W M S, Chan L W C, et al. Performance comparison of the Cobas® Liat® and Cepheid® GeneXpert® systems on SARS-CoV-2 detection in nasopharyngeal swab and posterior oropharyngeal saliva. Expert Review of Molecular Diagnostics, 2021, 21(5): 515-518.
doi: 10.1080/14737159.2021.1919513
[32]   Cassidy H, van Genne M, Lizarazo-Forero E, et al. Evaluation of the QIAstat-Dx RP2.0 and the BioFire FilmArray RP2.1 for the rapid detection of respiratory pathogens including SARS-CoV-2. Frontiers in Microbiology, 2022, 13: 854209.
doi: 10.3389/fmicb.2022.854209
[33]   何维芝, 许彬, 蒋立. 不同提取及扩增方法检测新型冠状病毒核酸的性能比较分析. 华南预防医学, 2022, 48(1): 135-138.
[33]   He W Z, Xu B, Jiang L. Comparative analysis of the performance of different extraction and amplification methods for the detection of nucleic acids of SARS-CoV-2. South China Journal of Preventive Medicine, 2022, 48(1): 135-138.
[34]   Hansen G, Marino J, Wang Z X, et al. Clinical performance of the point-of-care cobas liat for detection of SARS-CoV-2 in 20 minutes: a multicenter study. Journal of Clinical Microbiology, 2021, 59(2): e02811-e02820.
[35]   Lucena Baeza L, Pfennigwerth N, Hamprecht A. Rapid and easy detection of carbapenemases in enterobacterales in the routine laboratory using the new GenePOC carba/revogene carba C assay. Journal of Clinical Microbiology, 2019, 57(9): e00597-e00519.
[36]   Ramachandran A, Noble J, Deucher A, et al. Performance of Abbott ID-Now rapid nucleic amplification test for laboratory identification of COVID-19 in asymptomatic emergency department patients. Journal of the American College of Emergency Physicians Open, 2021, 2(6): e12592.
[37]   Kim H N, Jang W S, Nam J, et al. Performance evaluation of Alere i influenza A&B in detecting influenza viruses A and B. Annals of Clinical and Laboratory Science, 2021, 51(1): 106-111.
[38]   Ganguli A, Mostafa A, Berger J, et al. Rapid isothermal amplification and portable detection system for SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(37): 22727-22735.
[39]   Zhao H, Liu F, Xie W, et al. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sensors and Actuators B: Chemical, 2021, 327: 128899.
doi: 10.1016/j.snb.2020.128899
[40]   Chan K, Weaver S C, Wong P Y, et al. Rapid, affordable and portable medium-throughput molecular device for Zika virus. Scientific Reports, 2016, 6: 38223.
doi: 10.1038/srep38223 pmid: 27934884
[41]   Chen P, Chen C, Su H Y, et al. Integrated and finger-actuated microfluidic chip for point-of-care testing of multiple pathogens. Talanta, 2021, 224: 121844.
doi: 10.1016/j.talanta.2020.121844
[42]   Sun F, Ganguli A, Nguyen J, et al. Smartphone-based multiplex 30-minute nucleic acid test of live virus from nasal swab extract. Lab on a Chip, 2020, 20(9): 1621-1627.
doi: 10.1039/d0lc00304b pmid: 32334422
[43]   Gong Y, Zheng Y M, Jin B R, et al. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta, 2019, 201: 126-133.
doi: S0039-9140(19)30373-X pmid: 31122402
[44]   Park Y M, Lim S Y, Jeong S W, et al. Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens. Nano Convergence, 2018, 5: 15.
doi: 10.1186/s40580-018-0147-0 pmid: 29904621
[45]   Azmi I, Faizan M I, Kumar R, et al. A saliva-based RNA extraction-free workflow integrated with Cas13a for SARS-CoV-2 detection. Frontiers in Cellular and Infection Microbiology, 2021, 11: 632646.
doi: 10.3389/fcimb.2021.632646
[46]   Alafeef M, Moitra P, Dighe K, et al. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nature Protocols, 2021, 16(6): 3141-3162.
doi: 10.1038/s41596-021-00546-w pmid: 33931780
[47]   Mao R, Qi L F, Wang Z, et al. Helix loop-mediated isothermal amplification of nucleic acids. RSC Advances, 2018, 8(34): 19098-19102.
doi: 10.1039/C8RA01201F
[48]   Go Y Y, Rajapakse R P V J, Kularatne S A M, et al. A pan-dengue virus reverse transcription-insulated isothermal PCR assay intended for point-of-need diagnosis of dengue virus infection by use of the POCKIT nucleic acid analyzer. Journal of Clinical Microbiology, 2016, 54(6): 1528-1535.
doi: 10.1128/JCM.00225-16 pmid: 27030492
[49]   Yang M J, Ke Y H, Wang X S, et al. Development and evaluation of a rapid and sensitive EBOV-RPA test for rapid diagnosis of Ebola virus disease. Scientific Reports, 2016, 6: 26943.
doi: 10.1038/srep26943 pmid: 27246147
[50]   Priye A, Wong S, Bi Y P, et al. Lab-on-a-drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Analytical Chemistry, 2016, 88(9): 4651-4660.
doi: 10.1021/acs.analchem.5b04153 pmid: 26898247
[51]   Guo M Z, Gao B B, He B F. Paper and pseudo-paper based flexible membrane devices. Chinese Science Bulletin, 2020, 65(23): 2454-2468.
[52]   Chiang C K, Kurniawan A, Kao C Y, et al. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Talanta, 2019, 194: 837-845.
doi: 10.1016/j.talanta.2018.10.104
[53]   Augustine R, Hasan A, Das S, et al. Loop-mediated isothermal amplification (LAMP): a rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology, 2020, 9(8): 182.
doi: 10.3390/biology9080182
[54]   Zhang J Q, Nfon C, Tsai C F, et al. Development and evaluation of a real-time RT-PCR and a field-deployable RT-insulated isothermal PCR for the detection of Seneca Valley virus. BMC Veterinary Research, 2019, 15(1): 168.
doi: 10.1186/s12917-019-1927-4 pmid: 31126297
[55]   Miao G J, Zhang L L, Zhang J, et al. Free convective PCR: from principle study to commercial applications-A critical review. Analytica Chimica Acta, 2020, 1108: 177-197.
doi: S0003-2670(20)30138-0 pmid: 32222239
[56]   Luo K, Kim H Y, Oh M H, et al. Paper-based lateral flow strip assay for the detection of foodborne pathogens: principles, applications, technological challenges and opportunities. Critical Reviews in Food Science and Nutrition, 2020, 60(1): 157-170.
doi: 10.1080/10408398.2018.1516623 pmid: 30311773
[57]   Morbioli G G, Mazzu-Nascimento T, Stockton A M, et al. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review. Analytica Chimica Acta, 2017, 970: 1-22.
doi: S0003-2670(17)30348-3 pmid: 28433054
[1] LIANG Shu-rui,LI Jiao-jiao,QI Hao. Construction of Riboregulator in the Application of Point-of-care Testing[J]. China Biotechnology, 2022, 42(9): 67-82.
[2] MA Li-li,YI Pan-pan,AO Ni-hua,JIAO Hong-tao,LEI Rui-peng,LIU Huan. A Study of Interdisciplinarity in Biosafety Research Based on Discipline Categories and Enrichment Analysis[J]. China Biotechnology, 2021, 41(12): 116-124.
[3] YANG Yu, LIU Ya, GU Lan, ZHAO Ting-ting, REN Lu-feng. The Current Situation and the Development Trend of Automatic Nucleic Acid Molecular Diagnostic System[J]. China Biotechnology, 2017, 37(3): 115-123.
[4] PANG Jin-hui, MA Cai-yun, FENG Yong-li, HU Rui-fa. Biosafety of Genetically Modified Crops: Scientific Evidence[J]. China Biotechnology, 2016, 36(1): 122-138.
[5] YU Zhen-hang, WANG De-ping. Analysis of Molecular Diagnostics and Individuation Treatment Aiming at Serious Diseases Topics in "Eleventh Five-Year Plan" National High Technology Research and Development Program[J]. China Biotechnology, 2012, 32(6): 125-130.
[6] GU Hui-Yong, TIAN Jia, LI Pei-Jing, LI Jie. Study on Mutated DHDPS Gene as Selectable Marker of Transgenic Plant[J]. China Biotechnology, 2009, 29(05): 61-65.