Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (9): 58-66    DOI: 10.13523/j.cb.2205051
    
Research Progress of Non-viral Vector Delivery System for mRNA Vaccines
JIN Zhe-tong1,RUI Xue1,JIANG Hou-zhe1,WANG Jing-jing1,**(),CHEN Yu-gen2
1. College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
2. The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
Download: HTML   PDF(982KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the outbreak of COVID-19, the world urgently needs a large number of effective vaccines to deal with this disaster. mRNA vaccines are safe and have short development cycle, which can fill the gap between epidemic diseases and vaccine shortages. So mRNA has become one of the most potential vaccines at present and has attracted attention in the field of infectious diseases and tumors. Technological innovation has greatly improved the shortcomings of mRNA, such as instability and low translation efficiency. However, delivering mRNA to target cells safely and efficiently is still a major challenge that hinders the progress in mRNA research. Hopefully, delivery systems have put forward many effective solutions. This review focuses on the non-viral vector delivery system for mRNA vaccine delivery in vivo, and the application of mRNA in infectious disease and tumor vaccine, in order to provide reference for research and development of mRNA vaccines.



Key wordsmRNA vaccine      Non-viral vector      Delivery system      Lipid nanoparticles      Polymer     
Received: 30 May 2022      Published: 10 October 2022
ZTFLH:  R94R186  
Corresponding Authors: Jing-jing WANG     E-mail: wangjingjing@njucm.edu.cn
Cite this article:

JIN Zhe-tong,RUI Xue,JIANG Hou-zhe,WANG Jing-jing,CHEN Yu-gen. Research Progress of Non-viral Vector Delivery System for mRNA Vaccines. China Biotechnology, 2022, 42(9): 58-66.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2205051     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I9/58

Fig.1 Non-viral vector delivery system for mRNA vaccine delivery
疫苗名称 适应症 公司名称 研发阶段
ARCoV COVID-19 沃森生物 Ⅲ期临床
SW0123 COVID-19 斯微生物 Ⅱ期临床
LVRNA009 COVID-19 艾美疫苗 Ⅱ期临床
PTX-COVID19-B COVID-19 云顶新耀 Ⅱ期临床
SYS6006 COVID-19 石药集团 Ⅰ期临床
mRNA vaccine(COVID-19, delta/omicron variant) COVID-19 锐博生物 Ⅰ期临床
anti-SARS-CoV-2 mRNA lipid nanoparticle vaccine COVID-19 康希诺生物 Ⅰ期临床
R520A COVID-19 瑞科生物 Ⅰ期临床
Table 1 The COVID-19 mRNA vaccines under clinical trials in China
疫苗名称 适应症 公司名称 研发阶段
mRNA-1893 寨卡病毒 Moderna Ⅰ期临床
mRNA-1325 寨卡病毒 Moderna Ⅰ期临床
mRNA-1345 呼吸道合胞病毒 Moderna Ⅰ期临床
mRNA-1851 甲型流感病毒H7N9亚型 Moderna Ⅰ期临床
mRNA-1440 甲型流感病毒H10N8亚型 Moderna Ⅰ期临床
MRT5400 甲型流感病毒H3N2亚型 Translate Bio Ⅰ期临床
mRNA-1944 奇昆古尼亚病毒 Moderna Ⅰ期临床
CV7201 狂犬病病毒 CureVac Ⅰ期临床
CV7202 狂犬病病毒 CureVac Ⅰ期临床
GSK3903133A 狂犬病病毒 GSK Ⅰ期临床
mRNA-1644 艾滋病病毒 Moderna Ⅰ期临床
mRNA-1644v2-Core 艾滋病病毒 Moderna Ⅰ期临床
mRNA-1574 艾滋病病毒 Moderna Ⅰ期临床
Table 2 mRNA vaccines for infectious diseases
疫苗名称 适应症 公司名称 研发阶段
BNT 111 黑色素瘤 BioNTech Ⅱ期临床
BNT 113 头颈瘤 BioNTech Ⅱ期临床
BNT 122 非小细胞肺癌、结直肠癌、黑色素瘤、三阴乳腺癌 BioNTech Ⅱ期临床
BNT 112 前列腺癌 BioNTech Ⅰ期临床
BNT 114 三阴乳腺癌 BioNTech Ⅰ期临床
BNT 115 卵巢癌 BioNTech Ⅰ期临床
NEO-PV-01 非小细胞肺癌、黑色素瘤、膀胱癌 BioNTech Ⅰ期临床
NEO-SV-01 乳腺癌 BioNTech Ⅰ期临床
mRNA-4157 实体瘤 Moderna Ⅱ期临床
mRNA-4650 胃肠道肿瘤、黑色素瘤、泌尿系统肿瘤 Moderna Ⅰ/Ⅱ期临床
mRNA-5671 胰腺癌、非小细胞肺癌、结直肠癌 Moderna Ⅰ期临床
CV9104 前列腺癌 CureVac Ⅱ期临床
CV9103 前列腺癌 CureVac Ⅰ/Ⅱ期临床
CV9201 非小细胞肺癌 CureVac Ⅰ/Ⅱ期临床
CV9202 非小细胞肺癌 CureVac Ⅰ/Ⅱ期临床
Table 3 Progress of mRNA tumor vaccines by BioNTech, Moderna, and CureVac
[1]   孟子延, 马丹婧, 高雪, 等. mRNA疫苗及其作用机制的研究进展. 中国生物制品学杂志, 2021, 34(6): 740-744.
[1]   Meng Z Y, Ma D J, Gao X, et al. Progress in research on mRNA vaccine and its mechanism. Chinese Journal of Biologicals, 2021, 34(6): 740-744.
[2]   Granot-Matok Y, Kon E, Dammes N, et al. Therapeutic mRNA delivery to leukocytes. Journal of Controlled Release, 2019, 305: 165-175.
doi: S0168-3659(19)30288-3 pmid: 31121277
[3]   Iavarone C, O’hagan D T, Yu D, et al. Mechanism of action of mRNA-based vaccines. Expert Review of Vaccines, 2017, 16(9): 871-881.
doi: 10.1080/14760584.2017.1355245 pmid: 28701102
[4]   Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Molecular Cancer, 2021, 20(1): 41.
doi: 10.1186/s12943-021-01335-5 pmid: 33632261
[5]   Karikó K, Muramatsu H, Welsh F A, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy, 2008, 16(11): 1833-1840.
doi: 10.1038/mt.2008.200 pmid: 18797453
[6]   Hao L, Wu Y Q, Zhang Y D, et al. Combinational PRR agonists in liposomal adjuvant enhances immunogenicity and protective efficacy in a tuberculosis subunit vaccine. Frontiers in Immunology, 2020, 11: 575504.
doi: 10.3389/fimmu.2020.575504
[7]   Karikó K, Ni H P, Capodici J, et al. mRNA is an endogenous ligand for toll-like receptor 3. Journal of Biological Chemistry, 2004, 279(13): 12542-12550.
doi: 10.1074/jbc.M310175200 pmid: 14729660
[8]   Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004, 303(5663): 1526-1529.
doi: 10.1126/science.1093620 pmid: 14976262
[9]   Wang H X, Li M Q, Lee C M, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chemical Reviews, 2017, 117(15): 9874-9906.
doi: 10.1021/acs.chemrev.6b00799
[10]   Weissman D. mRNA transcript therapy. Expert Review of Vaccines, 2015, 14(2): 265-281.
doi: 10.1586/14760584.2015.973859 pmid: 25359562
[11]   Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics-developing a new class of drugs. Nature Reviews Drug Discovery, 2014, 13(10): 759-780.
doi: 10.1038/nrd4278 pmid: 25233993
[12]   Hajj K A, Whitehead K A. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials, 2017, 2: 17056.
doi: 10.1038/natrevmats.2017.56
[13]   胡瞬, 易有金, 胡涛, 等. mRNA疫苗的开发及临床研究进展. 中国生物工程杂志, 2019, 39(11): 105-112.
[13]   Hu S, Yi Y J, Hu T, et al. Development and clinical progress of mRNA vaccine. China Biotechnology, 2019, 39(11): 105-112.
[14]   Karikó K, Muramatsu H, Ludwig J, et al. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Research, 2011, 39(21): e142.
doi: 10.1093/nar/gkr695
[15]   Li N, Hu Y L, He C X, et al. Preparation, characterisation and anti-tumour activity of Ganoderma lucidum polysaccharide nanoparticles. Journal of Pharmacy and Pharmacology, 2010, 62(1): 139-144.
doi: 10.1211/jpp.62.01.0016
[16]   Andries O, Mc Cafferty S, de Smedt S C, et al. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2015, 217: 337-344.
doi: 10.1016/j.jconrel.2015.08.051
[17]   Pardi N, Weissman D. Nucleoside modified mRNA vaccines for infectious diseases. Methods in Molecular Biology (Clifton, N J), 2017, 1499: 109-121.
[18]   Anderson B R, Muramatsu H, Nallagatla S R, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Research, 2010, 38(17): 5884-5892.
doi: 10.1093/nar/gkq347 pmid: 20457754
[19]   Kamimura K, Suda T, Zhang G S, et al. Advances in gene delivery systems. Pharmaceutical Medicine, 2011, 25(5): 293-306.
doi: 10.2165/11594020-000000000-00000 pmid: 22200988
[20]   Nguyen G N, Everett J K, Kafle S, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nature Biotechnology, 2021, 39(1): 47-55.
doi: 10.1038/s41587-020-0741-7 pmid: 33199875
[21]   Shirley J L, de Jong Y P, Terhorst C, et al. Immune responses to viral gene therapy vectors. Molecular Therapy, 2020, 28(3): 709-722.
doi: S1525-0016(20)30002-2 pmid: 31968213
[22]   Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. Journal of Clinical and Diagnostic Research, 2015, 9(1): GE01-GE06.
[23]   Hou X C, Zaks T, Langer R, et al. Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 2021, 6(12): 1078-1094.
doi: 10.1038/s41578-021-00358-0
[24]   Tros de Ilarduya C, Sun Y, Düzgüneᶊ N. Gene delivery by lipoplexes and polyplexes. European Journal of Pharmaceutical Sciences, 2010, 40(3): 159-170.
doi: 10.1016/j.ejps.2010.03.019 pmid: 20359532
[25]   Ulkoski D, Bak A, Wilson J T, et al. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opinion on Drug Delivery, 2019, 16(11): 1149-1167.
doi: 10.1080/17425247.2019.1663822
[26]   Zhong D G, Jiao Y P, Zhang Y, et al. Effects of the gene carrier polyethyleneimines on structure and function of blood components. Biomaterials, 2013, 34(1): 294-305.
doi: 10.1016/j.biomaterials.2012.09.060 pmid: 23069714
[27]   Dahlman J E, Barnes C, Khan O F, et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nature Nanotechnology, 2014, 9(8): 648-655.
doi: 10.1038/nnano.2014.84 pmid: 24813696
[28]   Tang G P, Guo H Y, Alexis F, et al. Low molecular weight polyethylenimines linked by beta-cyclodextrin for gene transfer into the nervous system. The Journal of Gene Medicine, 2006, 8(6): 736-744.
doi: 10.1002/jgm.874
[29]   Venault A, Huang Y C, Lo J W, et al. Tunable PEGylation of branch-type PEI/DNA polyplexes with a compromise of low cytotoxicity and high transgene expression: in vitro and in vivo gene delivery. Journal of Materials Chemistry B, 2017, 5(24): 4732-4744.
doi: 10.1039/c7tb01046j pmid: 32264316
[30]   Xue L, Yan Y F, Kos P, et al. PEI fluorination reduces toxicity and promotes liver-targeted siRNA delivery. Drug Delivery and Translational Research, 2021, 11(1): 255-260.
doi: 10.1007/s13346-020-00790-9
[31]   Ren J, Cao Y M, Li L, et al. Self-assembled polymeric micelle as a novel mRNA delivery carrier. Journal of Controlled Release, 2021, 338: 537-547.
doi: 10.1016/j.jconrel.2021.08.061 pmid: 34481924
[32]   Li M, Li Y, Peng K, et al. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses. Acta Biomaterialia, 2017, 64: 237-248.
doi: S1742-7061(17)30635-9 pmid: 29030308
[33]   Liu Y, Li Y F, Keskin D, et al. Poly(β-amino esters): synthesis, formulations, and their biomedical applications. Advanced Healthcare Materials, 2019, 8(2): e1801359.
[34]   Patel A K, Kaczmarek J C, Bose S M, et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Advanced Materials (Deerfield Beach, Fla), 2019, 31(8): e1805116.
[35]   Dong Y Z, Siegwart D J, Anderson D G. Strategies, design, and chemistry in siRNA delivery systems. Advanced Drug Delivery Reviews, 2019, 144: 133-147.
doi: S0169-409X(19)30054-7 pmid: 31102606
[36]   Cullis P R, Hope M J. Lipid nanoparticle systems for enabling gene therapies. Molecular Therapy, 2017, 25(7): 1467-1475.
doi: S1525-0016(17)30111-9 pmid: 28412170
[37]   Cheng X W, Lee R J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews, 2016, 99: 129-137.
doi: S0169-409X(16)30053-9 pmid: 26900977
[38]   Hirko A, Tang F X, Hughes J A. Cationic lipid vectors for plasmid DNA delivery. Current Medicinal Chemistry, 2003, 10(14): 1185-1193.
doi: 10.2174/0929867033457412
[39]   Colosimo A, Serafino A, Sangiuolo F, et al. Gene transfection efficiency of tracheal epithelial cells by DC-Chol-DOPE/DNA complexes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1999, 1419(2): 186-194.
doi: 10.1016/S0005-2736(99)00067-X
[40]   高晓佩, 管晓燕, 白国辉, 等. DNA疫苗的作用机制. 中国组织工程研究, 2018, 22(8): 1281-1286.
[40]   Gao X P, Guan X Y, Bai G H, et al. DNA vaccines: mechanisms of action. Chinese Journal of Tissue Engineering Research, 2018, 22(8): 1281-1286.
[41]   Fenton O S, Kauffman K J, McClellan R L, et al. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Advanced Materials (Deerfield Beach, Fla), 2016, 28(15): 2939-2943.
doi: 10.1002/adma.201505822
[42]   McKinlay C J, Benner N L, Haabeth O A, et al. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): E5859-E5866.
[43]   Heyes J, Palmer L, Bremner K, et al. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. Journal of Controlled Release, 2005, 107(2): 276-287.
pmid: 16054724
[44]   Semple S C, Akinc A, Chen J X, et al. Rational design of cationic lipids for siRNA delivery. Nature Biotechnology, 2010, 28(2): 172-176.
doi: 10.1038/nbt.1602 pmid: 20081866
[45]   Kauffman K J, Dorkin J R, Yang J H, et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Letters, 2015, 15(11): 7300-7306.
doi: 10.1021/acs.nanolett.5b02497 pmid: 26469188
[46]   Dong Y Z, Love K T, Dorkin J R, et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11): 3955-3960.
[47]   Rybakova Y, Kowalski P S, Huang Y X, et al. mRNA delivery for therapeutic anti-HER2 antibody expression in vivo. Molecular Therapy, 2019, 27(8): 1415-1423.
doi: S1525-0016(19)30226-6 pmid: 31160223
[48]   Scheel B, Teufel R, Probst J, et al. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. European Journal of Immunology, 2005, 35(5): 1557-1566.
pmid: 15832293
[49]   Armbruster N, Jasny E, Petsch B. Advances in RNA vaccines for preventive indications: a case study of A vaccine against rabies. Vaccines, 2019, 7(4): 132.
doi: 10.3390/vaccines7040132
[50]   Mai Y P, Guo J S, Zhao Y, et al. Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cellular Immunology, 2020, 354: 104143.
doi: 10.1016/j.cellimm.2020.104143
[51]   Oladimeji O, Akinyelu J, Singh M. Co-polymer functionalised gold nanoparticles show efficient mitochondrial targeted drug delivery in cervical carcinoma cells. Journal of Biomedical Nanotechnology, 2020, 16(6): 853-866.
doi: 10.1166/jbn.2020.2930 pmid: 33187581
[52]   Kaczmarek J C, Kauffman K J, Fenton O S, et al. Optimization of a degradable polymer-lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells. Nano Letters, 2018, 18(10): 6449-6454.
doi: 10.1021/acs.nanolett.8b02917 pmid: 30211557
[53]   Polack F P, Thomas S J, Kitchin N, et al. Safety and efficacy of the BNT162b 2 mRNA covid-19 vaccine. The New England Journal of Medicine, 2020, 383(27): 2603-2615.
doi: 10.1056/NEJMoa2034577
[54]   Baden L R, El Sahly H M, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. Annals of Internal Medicine, 2021, 384(5): 403-416.
[55]   Chen G L, Li X F, Dai X H, et al. Safety and immunogenicity of the SARS-CoV-2 ARCoV mRNA vaccine in Chinese adults: a randomised, double-blind, placebo-controlled, phase 1 trial. The Lancet Microbe, 2022, 3(3): e193-e202.
doi: 10.1016/S2666-5247(21)00280-9
[56]   Zhang N N, Li X F, Deng Y Q, et al. A thermostable mRNA vaccine against COVID-19. Cell, 2020, 182(5): 1271-1283,e16.
doi: 10.1016/j.cell.2020.07.024
[57]   Bahl K, Senn J J, Yuzhakov O, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Molecular Therapy, 2017, 25(6): 1316-1327.
doi: S1525-0016(17)30156-9 pmid: 28457665
[58]   Freyn A W, Ramos da Silva J, Rosado V C, et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Molecular Therapy, 2020, 28(7): 1569-1584.
doi: S1525-0016(20)30199-4 pmid: 32359470
[59]   Mu Z K, Haynes B F, Cain D W. HIV mRNA vaccines-progress and future paths. Vaccines, 2021, 9(2): 134.
doi: 10.3390/vaccines9020134
[60]   Medina-Magües L G, Gergen J, Jasny E, et al. mRNA vaccine protects against zika virus. Vaccines, 2021, 9(12): 1464.
doi: 10.3390/vaccines9121464
[61]   Zhang R, Billingsley M M, Mitchell M J. Biomaterials for vaccine-based cancer immunotherapy. Journal of Controlled Release, 2018, 292: 256-276.
doi: S0168-3659(18)30579-0 pmid: 30312721
[62]   Rausch S, Schwentner C, Stenzl A, et al. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Human Vaccines & Immunotherapeutics, 2014, 10(11): 3146-3152.
[63]   Sahin U, Oehm P, Derhovanessian E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature, 2020, 585(7823): 107-112.
doi: 10.1038/s41586-020-2537-9
[64]   Schmidt M, Bolte S, Frenzel K, et al. Abstract OT2-06-01: highly innovative personalized RNA-immunotherapy for patients with triple negative breast cancer. Cancer Research, 2019, 79(4_Supplement): OT2-06-01.
[65]   Liu L N, Wang Y H, Miao L, et al. Combination immunotherapy of MUC 1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Molecular Therapy, 2018, 26(1): 45-55.
doi: 10.1016/j.ymthe.2017.10.020
[66]   Lin Y X, Wang Y, Ding J X, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Science Translational Medicine, 2021, 13(599): eaba9772.
doi: 10.1126/scitranslmed.aba9772
[1] ZHAO Bing,MA Chun-bo,SUN Bing-bing,ZHAO Hai-yang. Research Progress of Intelligent Insulin Delivery System for Diabetes Treatment[J]. China Biotechnology, 2022, 42(5): 81-90.
[2] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[3] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[4] LIU Zi-ru,ZHANG Tian. Research Progress of Polydopamine Modified Polymers in Nerve Repair[J]. China Biotechnology, 2020, 40(10): 57-64.
[5] Wen-jie CAO,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. The Application of Polymersomes in Drug Delivery System[J]. China Biotechnology, 2019, 39(6): 62-72.
[6] Si-nan QIN,Lu-hua TANG,Wen-hui GAO. Preparation of Enrofloxacin Molecular Imprinting Electro- chemical Sensor and Its Application to Rapid Detection of Foods[J]. China Biotechnology, 2019, 39(3): 65-74.
[7] JING Jia-mei,XUN Xin,WANG Min,PENG Ru-chao,SHI Yi. Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions[J]. China Biotechnology, 2019, 39(12): 18-23.
[8] HU Shun,YI You-jin,HU Tao,LI Fu-sheng. Development and Clinical Progress of mRNA Vaccine[J]. China Biotechnology, 2019, 39(11): 105-112.
[9] Ran XU,Song CHEN. Research Progress of CRISPR/Cas9 Delivery System and Its Application in Gene-related Diseases[J]. China Biotechnology, 2018, 38(3): 81-88.
[10] XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering[J]. China Biotechnology, 2018, 38(12): 76-81.
[11] ZHOU Zhong-ting, ZHANG Quan, WANG Sheng-tao, CAI Yin, NAKANISHI Hideki, YIN Jian. Polymeric Nanomicelles Conjugated with BODIPY-based Photosensitizers for Targeted Photodynamic Therapy[J]. China Biotechnology, 2017, 37(10): 33-41.
[12] ZHANG Xin-yuan, DENG Jia, LIU Xin, CHEN Lin, LIN Jun, CAI Wei-wen. Bst DNA Polymerase Large Fragment for Whole Genome Amplification[J]. China Biotechnology, 2016, 36(7): 48-54.
[13] DAI Shuang, ZHAO Qing-qing, QIU Feng. Transfection Efficiency Using PEI-CP Complex for CD133+ Differently Expressed by Colon Cancer Lines[J]. China Biotechnology, 2016, 36(6): 32-38.
[14] DONG Juan, LI Fo-sheng, LUO Feng-Xue, XIA Fang, ZHU Shu-hua, TANG Lin. Cloning and Expression Analysis of Rice miRNA3026 Promoter and Thioredoxin OsTxnDC9[J]. China Biotechnology, 2016, 36(1): 29-37.
[15] HE Ya-nan, CHEN Xiao-li, REN Xiao-xia, HAO Hai-sheng, QIN Tong, ZHAO Xue-ming, LU Yong-qiang, WANG Dong. Research on Rurification of Mouse Spermatogonial Stem Cells Using Magnetic Microbeads[J]. China Biotechnology, 2014, 34(7): 38-43.