Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (11): 105-112    DOI: 10.13523/j.cb.20191112
    
Development and Clinical Progress of mRNA Vaccine
HU Shun1,2,3,4,YI You-jin1,*(),HU Tao3,LI Fu-sheng2,*
1 College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
2 Kangzhong (Beijing) Biotechnology Co., Ltd., Beijing 100176, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Public Healthy, Xiangnan University, Chenzhou 423000, China
Download: HTML   PDF(448KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As the increasingly develepoment of mRNA stability and delivery systems, the mRNA vaccine has made rapid progress in the individualized tumor vaccine in recent years. Due to its simple production process, expression the antigens in cells, and security features is superior to DNA vaccine, mRNA is a new form of vaccine promising alternative to attenuated and inactivated vaccine and protein vaccine.In order to understand the development and research status of global mRNA vaccine, the molecular design, delivery system and clinical research status of mRNA vaccine were analyzed and summarized, providing reference for the subsequent development and research of mRNA vaccine.



Key wordsmRNA vaccine      Delivery systems      Clinical trail     
Received: 04 March 2019      Published: 17 December 2019
ZTFLH:  Q819  
Corresponding Authors: You-jin YI,Fu-sheng LI     E-mail: yiyoujin@163.com
Cite this article:

HU Shun,YI You-jin,HU Tao,LI Fu-sheng. Development and Clinical Progress of mRNA Vaccine. China Biotechnology, 2019, 39(11): 105-112.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191112     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I11/105

疫苗种类 免疫原性 安全性 抗体特
异性
成分 制备工艺 免疫应答特征 适应范围
第一代疫苗
减毒/灭活疫苗
不明确 简单 细胞免疫
体液免疫
预防性疫苗
第二代疫苗
亚单位疫苗
明确 复杂
(需要佐剂)
体液免疫或细胞免疫
(与佐剂有关)
预防性疫苗
治疗性疫苗
第三代疫苗核酸疫苗 DNA 有争议 明确 简单 体液免疫
细胞免疫
胞内菌感染预防及治疗性疫苗
肿瘤治疗性疫苗
预防性疫苗 RNA 明确 简单
Table 1 Comparison of different types of vaccines
公司名称 项目名称 平台 项目内容 前期
研发
临床前
研究
临床
I期
临床
II期
Moderna mRNA-1777 预防性疫苗 呼吸道合胞病毒(RSV)疫苗 完成 完成 完成
mRNA-1647 巨细胞病毒(CMV )疫苗 完成 完成 进行
mRNA-1653 人偏肺病毒(hMPV)+副流感病毒3型PIV3 疫苗 完成 完成
mRNA-1278 带状疱疹疫苗(VZV)疫苗 完成 进行
mRNA-1440 流感H10N8疫苗 完成 完成 完成
mRNA-1850 流感H7N9疫苗 完成 完成 完成
mRNA-1893 寨卡病毒(ZIKV)疫苗 完成 进行
mRNA-1388 奇昆古尼亚热病(Chikungunya)疫苗 完成 完成 完成
mRNA-4157 肿瘤疫苗 个体化肿瘤疫苗 完成 完成 进行
mRNA-5671 KRAS疫苗(针对结直肠癌,非小细胞肺癌,胰腺癌) 完成 完成
BioTech 个体化新表位特异性
免疫治疗
肿瘤疫苗 转移性黑色素瘤 完成 完成 进行
多样实体瘤 完成 进行
保密 完成 完成 完成 进行
Fix VAC 晚期黑素瘤 完成 完成
HPV+头部或者颈部肿瘤 完成 进行
三阴性乳腺癌 完成 进行
前列腺癌、卵巢癌、神经内分泌肿瘤 进行
传染病疫苗 季节性流感 进行
多达10种传染病的适应证 进行
罕见疾病 蛋白质替代治疗 5种疾病 进行
CureVAC AG 预防性疫苗 狂犬病病毒 完成 完成 进行
流感病毒 完成 进行
多样性项目(疟疾,流感) 进行
呼吸道合胞病毒(RSV)疫苗 进行
艾滋病 进行
爆发的紧急的目标 完成 进行
肿瘤治疗 非小细胞肺癌 完成 完成 进行
浅表肿瘤 完成 进行
Table 2 The mRNA vaccine research and development pipeline and progress of three major companies
[1]   Wolff J A, Malone R W, Williams P , et al. Direct gene transfer into mouse muscle in vivo. Science, 1990,247(4949):1465-1468.
doi: 10.1038/s41434-019-0106-3 pmid: 31624368
[2]   Sahin U, Derhovanessian E, Miller M , et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017,547(7662):222-226.
doi: 10.1038/nature23003 pmid: 28678784
[3]   Kormann M S D, Hasenpusch G, Aneja M K , et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature Biotechnology, 2011,29(2):154-157.
doi: 10.1038/nbt.1733 pmid: 21217696
[4]   Peng Z H, Sharma V, Singleton S F , et al. Synjournal and application of a chain-terminating dinucleotide mRNA cap analog. Organic Letters, 2002,4(2):161-164.
doi: 10.1021/ol0167715 pmid: 11796040
[5]   Stepinski J, Waddell C, Stolarski R , et al. Synjournal and properties of mRNAs containing the novel “anti-reverse” cap analogues 7-methyl(3-O-methyl)GpppG and 7-methyl(3-deoxy)GpppG. RNA, 2001,7(10):1486-1495.
pmid: 11680853
[6]   Jemielity J, Fowler T, Zuberek J , et al. Novel “Anti-Reverse” cap analogues with superior translational properties. RNA, 2003,9(9):1108-1122.
doi: 10.1261/rna.5430403 pmid: 12923259
[7]   Grudzien-Nogalska E, Stepinski J, Jemielity J , et al. Synjournal of anti-reverse cap analogs (ARCAs)and their applications in mRNA translation and stability. Methods in Enzymology, 2007,431:203-227.
doi: 10.1016/S0076-6879(07)31011-2 pmid: 17923237
[8]   Kuhn A N, Diken M, Kreiter S , et al. Phosphorothioate cap analogs increase stability and translational effciency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Therapy, 2010,17(8):961-971.
doi: 10.1038/gt.2010.52 pmid: 20410931
[9]   Kore A R, Shanmugasundaram M, Charles I , et al. Locked nucleic acid (LNA)-modified dinucleotide mRNA cap analogue: synjournal, enzymatic incorporation, and utilization. Journal of the American Chemical Society, 2009,131(18):6364-6365.
doi: 10.1021/ja901655p pmid: 19385620
[10]   Grudzien E, Stepinski J, Jankowska-Anyszka M , et al. Novel cap analogs for in vitro synjournal of mRNAs with high translational efficiency. RNA, 2004,10(9):1479-1487.
doi: 10.1261/rna.7380904 pmid: 15317978
[11]   Gray N K, Wickens M . Control of translation initiation in animals. Annual Review of Cell and Developmental Biology, 1998,14(1):399-458.
doi: 10.16288/j.yczz.19-045 pmid: 31624057
[12]   Kozak M . At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. Journal of Molecular Biology, 1987,196(4):947-950.
doi: 10.1016/0022-2836(87)90418-9 pmid: 3681984
[13]   Pelletier J, Sonenberg N . Insertion mutagenesis to increase secondary structure within the 5' noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell, 1985,40(3):515-526.
doi: 10.1016/0092-8674(85)90200-4 pmid: 2982496
[14]   Chen C Y, Shyu A B . AU-rich elements: characterization and importance in mRNA degradation. Trends in Biochemical Sciences, 1995,20(11):465-470.
doi: 10.1016/s0968-0004(00)89102-1 pmid: 8578590
[15]   Murray E L, Schoenberg D R . A + U-rich instability elements differentially activate 5'-3' and 3'-5' mRNA decay. Molecular and Cellular Biology, 2007,27(8):2791-2799.
doi: 10.1128/MCB.01445-06 pmid: 17296726
[16]   Vlasova-St L I, Bohjanen P R . Coordinate regulation of mRNA decay networks by GU-rich elements and CELF1. Current Opinion in Genetics & Development, 2011,21(4):444-451.
doi: 10.1016/j.pathol.2019.09.008 pmid: 31735344
[17]   Sahin U, Holtkamp S, Türecl ? , et al. Modification of RNA, producing an increased transcript stability and translation efficiency: US, US2019/0062762 A1. 2019-2-28[2019-03-01]. .
[18]   Ferizi M, Leonhardt C, Meggle C , et al. Stability analysis of chemically modified mRNA using micropattern-based single-cell arrays. Lab on a Chip, 2015,15(17):3561-3571.
doi: 10.1039/c5lc00749f pmid: 26201602
[19]   Wang Z, Kiledjian M . The poly(A)-binding protein and an mRNA stability protein jointly regulate an endoribonuclease activity. Molecular and Cellular Biology, 2000,20(17):6334-6341.
doi: 10.1128/mcb.20.17.6334-6341.2000 pmid: 10938110
[20]   Van der Velden A W, Voorma H O , Thomas A A. Vector design for optimal protein expression. Biotechniques, 2001, 31(3):572, 574, 576-580.
doi: 10.1007/s12033-019-00218-x pmid: 31664704
[21]   Alexopoulou L, Holt A C, Medzhitov R , et al. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature, 2001,413(6857):732-738.
doi: 10.1038/35099560 pmid: 11607032
[22]   Diebold S S, Kaisho T, Hemmi H , et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 2004,303(5663):1529-1531.
doi: 10.1126/science.1093616 pmid: 14976261
[23]   Heil F, Hemmi H, Hochrein H , et al. Species-specifc recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science, 2004,303(5663):1526-1529.
doi: 10.1126/science.1093620 pmid: 14976262
[24]   Karikó K, Buckstein M, Ni H , et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 2005,23(2):165-175.
doi: 10.1016/j.immuni.2005.06.008 pmid: 16111635
[25]   Pardi N, Parkhouse K, Kirkpatrick E , et al. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nature Communications, 2018,9(1):3361.
doi: 10.1038/s41467-018-05482-0 pmid: 30135514
[26]   Pardi ,N, Parkhouse K,Kirkpatrick E, , et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017,543(7644):248-251.
doi: 10.1038/nature21428 pmid: 28151488
[27]   Thess A, Grund S, Mui B L , et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Molecular Therapy, 2015,23(9):1456-1464.
doi: 10.1038/mt.2015.103 pmid: 26050989
[28]   Karikó K, Muramatsu H, Welsh F A , et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy, 2008,16(11):1833-1840.
doi: 10.1038/mt.2008.200 pmid: 18797453
[29]   Kormann M S, Hasenpusch G, Aneja M K , et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature Biotechnology, 2011,29(2):154-157.
doi: 10.1038/nbt.1733 pmid: 21217696
[30]   Mays L E, Ammon Treiber S, Mothes B , et al. Modified Foxp3 mRNA protects against asthma through an IL-10-dependent mechanism. Journal of Clinical Investigation, 2013,123(3):1216-1228.
doi: 10.1172/JCI65351
[31]   Sahin U, Karikó K , Türeci ?. mRNA-based therapeutics-developing a new class of drugs. Nature Reviews Drug Discovery, 2014,13(10):759-780.
doi: 10.1038/nrd4278
[32]   Heiser A, Coleman D, Dannull J , et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. Journal of Clinical Investigation, 2002,109(3):409-417.
doi: 10.1172/JCI14364 pmid: 11828001
[33]   Rejman J, Oberle V, Zuhorn I S , et al. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochemical Journal, 2004,377(1):159-169.
doi: 10.1016/j.imbio.2014.06.002 pmid: 25082708
[34]   Ma Z, Li J, He F , et al. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochemical and Biophysical Research Communications, 2005,330(3):755-759.
doi: 10.1016/j.bbrc.2005.03.041 pmid: 15809061
[35]   Landesman-Milo D, Peer D . Toxicity profiling of several common RNAi-based nanomedicines: a comparative study. Drug Delivery and Translational Research, 2014,4(1):96-103.
doi: 10.1007/s13346-013-0158-7 pmid: 25786620
[36]   Islam M A ,Reesor E K G,Xu Y, et al. Biomaterials for mRNA delivery. Biomaterials Science, 2015,3(12):1519-1533.
doi: 10.1039/c5bm00198f pmid: 26280625
[37]   Maier M A, Jayaraman M, Matsuda S , et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Molecular Therapy, 2013,21(8):1570-1578.
doi: 10.1038/mt.2013.124
[38]   Jayaraman M, Ansell S M, Mui B L , et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angewandte Chemie International Edition. 2012,124(34):8529-8533.
doi: 10.1002/anie.201203263 pmid: 22782619
[39]   Pardi N, Tuyishime S, Muramatsu H , et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release, 2015,217:345-351.
doi: 10.1016/j.jconrel.2015.08.007 pmid: 26264835
[40]   Sedic M, Senn J J, Lynn A , et al. Safety evaluation of lipid nanoparticle-formulated modified mRNA in the Sprague-Dawley rat and cynomolgus monkey. Veterinary Pathology, 2017,55(2):341-354.
doi: 10.1177/0300985817738095 pmid: 29191134
[41]   Rizk M, Tüzmen S X . Update on the clinical utility of an RNA interference-based treatment: focus on Patisiran. Pharmacogenomics and Personalized Medicine, 2017,2017(10):267-278.
doi: 10.2147/PGPM.S87945 pmid: 29184431
[42]   Zhao M, Li M, Zhang Z , et al. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Delivery, 2016,23(7):2596-2607.
doi: 10.3109/10717544.2015.1038856 pmid: 26024387
[43]   Li M, Zhao M, Fu Y , et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier viaintra- and paracellular pathways. Journal of Controlled Release, 2016,228:9-19.
doi: 10.1016/j.jconrel.2016.02.043 pmid: 26941035
[44]   Dong Y, Dorkin J R, Wang W , et al. Poly ( glycoamidoamine ) brushes formulated nanomaterials for systemic siRNA and mRNA delivery in vivo. Nano Letters, 2016,16(2):842-848.
doi: 10.1021/acs.nanolett.5b02428 pmid: 26727632
[45]   Prieve M G, Harvie P, Monahan S D , et al. Targeted mRNA therapy for ornithine transcarbamylase deficiency. Molecular Therapy, 2018,26(3):801-813.
doi: 10.1016/j.ymthe.2017.12.024 pmid: 29433939
[46]   Gandhi R T, Kwon D S, Macklin E A , et al. Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 gag and Nef. Journal of Acquired Immune Deficiency Syndromes, 2016,71(3):246-253.
doi: 10.1097/QAI.0000000000000852 pmid: 26379068
[47]   Kyte J A, Kvalheim G, Lislerud K , et al. T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells. Cancer Immunology, Immunotherapy, 2006,56(5):659-675.
doi: 10.1007/s00262-006-0222-y pmid: 16947019
[48]   Kyte J A, Mu L, Aamdal S , et al. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Therapy, 2006,13(10):905-918.
doi: 10.1038/sj.cgt.7700961 pmid: 16710345
[49]   Weide B ,Pascolo, S, Scheel B, et al. Direct Injection of protamine-protected mRNA: Results of a phase 1/2 vaccination trial in metastatic melanoma patients. Journal of Immunotherapy, 2009,32(5):498-507.
doi: 10.1097/CJI.0b013e3181a00068 pmid: 19609242
[50]   Wilgenhof S, Van Nuffel A M T, Benteyn D,et al. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Annals of Oncology, 2013,24(10):2686-2693.
doi: 10.1093/annonc/mdt245
[51]   Gan L M, Lagerstr?m Fermér M, Carlsson L G , et al. Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nature Communications, 2019,10(1):871.
doi: 10.1038/s41467-019-08852-4 pmid: 30787295
[1] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[2] GU Jiang, ZOU Quan-ming. Therapeutic Antibody Drugs on the Control of Methicillin-resistant Staphylococcus aureus[J]. China Biotechnology, 2012, 32(02): 96-99.