Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (6): 62-72    DOI: 10.13523/j.cb.20190609
    
The Application of Polymersomes in Drug Delivery System
Wen-jie CAO1,Xiang-yuan XIONG1,2,**(),Yan-chun GONG2,Zi-ling LI2,Yu-ping LI2
1 School of Pharmacy, Jiangxi Normal University of Science and Technology, Nanchang 330013,China
2 School of Life Sciences,Jiangxi Normal University of Science and Technology,Nanchang 330013,China
Download: HTML   PDF(1784KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As a novel kind of nano-drug carrier, the polymersomes have the characteristics of biodegradability, stability, biocompatibility and modifiable multi-functionalization and so on. Polymersomes can be prepared by changing polymer type and the ratio of hydrophilic - hydrophobic block, which possess different morphological and membrane properties. After modifiing polymersomes, more functions can be given to realize the ability of controlling drug release and targeting drugs. The structure, composition, preparation methods and the application of drug delivery system about polymersomes have been reviewed in detail. The purpose is to know the latest research progress of polymersomes and some important problems in this field need to be solved by scientists in the future.



Key wordsPolymersomes      Drug delivery system      Amphiphilic block copolymer      Controlled release      Target     
Received: 13 November 2018      Published: 12 July 2019
ZTFLH:  Q819  
Corresponding Authors: Xiang-yuan XIONG     E-mail: xyxiong@gmail.com
Cite this article:

Wen-jie CAO,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. The Application of Polymersomes in Drug Delivery System. China Biotechnology, 2019, 39(6): 62-72.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190609     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I6/62

Fig.1 Schematic representation of liposomes (left) versus polymersomes (right)
Fig.2 Schematic illustration of a 3D cross-section of a polymersome
Fig.3 Pentablock copolymer molecular formula and its possible microscopic schematic and TEM micrograph (a) Molecular formula (b) Possible schematic microstructure (c) TEM micrograph
Fig.4 PH-triggered transformation of polymersomes
Fig. 5 Shape transformable and thermo-responsive nano-scaffolds in a cancer tissue
Fig.6 Surface functionalised polymersome loaded with hydrophobic and hydrophilic drugs
Block numbers Polymersomes Function Loaded-cargoes Formation
Diblock mPEG-PLGA Normal Dox; Tax Nanoemulsion[63]
FA-PEG-PCL Targeted DOX; PTX Thin-film hydration[34]
PTMA-PGA Smart DOX; γ-Fe2O3 Nanoprecipitation[48]
PDP-TEG Smart DOX; CRT Nanoprecipitation[65]
PDMAEM-mPEG Normal pDNA Nanoprecipitation[36]
PS-β-CD/PEO-Fc Smart Rhodamine B Not reported[66]
PEG45-b-P(Asp-co-AspGA);
PEG114-b-P(Asp-co-AspPBA)
Smart Vancomycin Nanoprecipitation[67]
Triblock PLA-PEG-PLA Normal Atorvastatin; Lisinopril Nanoemulsion[40]
PAE-g-PCL-PEG Smart DOX·HCl Nanoprecipitation[47]
Block numbers Polymersomes Function Loaded-cargoes Formation
PBAE-PEG-PLA Smart Nile red Nanoprecipitation[69]
PEG-PAA(SH)-PDEA Normal BSA; Cc Nanoprecipitation[64]
PEO-b-P(DEA-stat-TMA) Smart DOX·HCl Nanoprecipitation[68]
Acupa-PEG-PTMBPEC-PSAC Targeted granzyme B Nanoprecipitation[38]
Poly[(HEMA-DTDPA)-mPEG Smart Cal Thin-film hydration[35]
Pentablock PLA-PEO-PPO-PEO-PLA Normal Insulin Nanoprecipitation[45]
Table 1 The application of polymersomes in drug delivery system
[1]   Zhu Y, Yang B, Chen S , et al. Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Progress in Polymer Science, 2017,64:1-22.
doi: 10.1016/j.progpolymsci.2015.05.001
[2]   Palivan C G, Goers R, Najer A , et al. Bioinspired polymer vesicles and membranes for biological and medical applications. Chemical Society Reviews, 2016,45(2):377-411.
doi: 10.1039/C5CS00569H
[3]   Che H, van Hest J C M . Stimuli-responsive polymersomes and nanoreactors. Journal of Materials Chemistry B, 2016,4(27):4632-4647.
doi: 10.1039/C6TB01163B
[4]   Krishnamoorthy B, Karanam V, Chellan V R , et al. Polymersomes as an effective drug delivery system for glioma--a review. Journal of Drug Targeting, 2014,22(6):469-477.
doi: 10.3109/1061186X.2014.916712
[5]   Lee J S, Feijen J . Polymersomes for drug delivery: design, formation and characterization. Journal of Control Release, 2012,161(2):473-483.
doi: 10.1016/j.jconrel.2011.10.005
[6]   Martin C, Aibani N, Callan J F , et al. Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs. Therapeutic Delivery, 2016,7(1):15-31.
doi: 10.4155/tde.15.84
[7]   Muller L K, Landfester K . Natural liposomes and synthetic polymeric structures for biomedical applications. Biochemical and Biophysical Research Communications, 2015,468(3):411-418.
doi: 10.1016/j.bbrc.2015.08.088
[8]   Massignani M, Lomas H, Battaglia G . Polymersomes: A synthetic biological approach to encapsulation and delivery. Advances in Polymer Science, 2010,229:115-154.
doi: 10.1007/978-3-642-12873-8
[9]   Gerasimov O V, Marquita J A B, Qualls M M , et al. Cytosolic drug delivery using pH- and light-sensitive liposomes. Advanced Drug Delivery Review, 1999,38(3):317-338.
doi: 10.1016/S0169-409X(99)00035-6
[10]   Allen T M, Cullis P R . Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 2013,65(1):36-48.
doi: 10.1016/j.addr.2012.09.037
[11]   Peer D, Karp J M, Hong S . Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007,2(12):751-760.
[12]   Kim Y J, Kim B, Hyun D C . Photocrosslinkable poly(ε-caprolactone)-b-hyperbranched polyglycerol (PCL b-hbPG) with improved biocompatibility and stability for drug delivery. Macromolecular Chemistry and Physics, 2015,216(11):1161-1170.
doi: 10.1002/macp.v216.11
[13]   Alibolandi M, Ramezani M, Abnous K , et al. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs. Journal of Nanoparticle Research, 2015,17(2):76-92.
doi: 10.1007/s11051-015-2878-8
[14]   Pippa N, Merkouraki M, Pispas S , et al. DPPC:MPOx chimeric advanced drug delivery nano systems (chiaDDnSs): physicochemical and structural characterization, stability and drug release studies. Internationa Journal of Pharmaceutics, 2013,450(1-2):1-10.
doi: 10.1016/j.ijpharm.2013.03.052
[15]   Bermudez H, Brannan A K, Hammer D A , et al. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules, 2002,35(21):8203-8208.
doi: 10.1021/ma020669l
[16]   Qin J, Liu Q, Zhang J , et al. Rationally separating the corona and membrane functions of polymer vesicles for enhanced T(2) MRI and drug delivery. ACS Applied MaterialsInterfaces, 2015,7(25):14043-14052.
doi: 10.1021/acsami.5b03222
[17]   Wuytens P, Parakhonskiy B, Yashchenok A , et al. Pharmacological aspects of release from microcapsules from polymeric multilayers to lipid membranes. Current Opinion in Pharmacology, 2014,18:129-140.
doi: 10.1016/j.coph.2014.09.016
[18]   Craciun I, Belluati A, Cornelia G , et al. Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers. Nanomedicine, 2017,12(7):811-817.
doi: 10.2217/nnm-2016-0413
[19]   Yewle J, Wattamwar P, Tao Z , et al. Progressive saturation improves the encapsulation of functional proteins in nanoscale polymer vesicles. Pharmaceutical Research, 2016,33(3):573-589.
doi: 10.1007/s11095-015-1809-9
[20]   Iyisan B, Kluge J, Formanek P , et al. Multifunctional and dual-responsive polymersomes as robust nanocontainers: design, formation by sequential post-conjugations, and pH-controlled drug release. Chemistry of Materials, 2016,28(5):1513-1525.
doi: 10.1021/acs.chemmater.5b05016
[21]   Nahire R, Haldar M K, Paul S , et al. Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells. Biomaterials, 2014,35(24):6482-6497.
doi: 10.1016/j.biomaterials.2014.04.026
[22]   Chiang W H, Huang W C, Chang C W , et al. Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. Journal of Control Release, 2013,168(3):280-288.
doi: 10.1016/j.jconrel.2013.03.029
[23]   Du J, O’Reilly R K . Advances and challenges in smart and functional polymer vesicles. Soft Matter, 2009,5(19):3544-3561.
doi: 10.1039/b905635a
[24]   Messager L, Gaitzsch J, Chierico L , et al. Novel aspects of encapsulation and delivery using polymersomes. Current Opinion in Pharmacology, 2014,18:104-111.
doi: 10.1016/j.coph.2014.09.017
[25]   Zhang L F, Eisenberg A . Multiple morphologiesof“crew-cut” aggregates of polystyrene-b-poly(acrylicacid) block copolymers. Science, 1995,268(5218):1728-1731.
doi: 10.1126/science.268.5218.1728
[26]   Kui Y, Eisenberg A . Multiple morphologies in aqueous solutions of aggregates of polystyrene-block poly(ethylene oxide) diblock copolymers. Macromolecules, 1996,29(19):6359-6361.
doi: 10.1021/ma960381u
[27]   Zhang L F, Eisenberg L . Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. Journal of the American Chemical Society, 1996,118(13):3168-3181.
doi: 10.1021/ja953709s
[28]   Zhang L F, Bartels C, Yu Y S , et al. Mesosized crystal-like structure of hexagonally packed hollow hoops by solution self-assembly of diblock copolymers. Physical Review Letters, 1997,79(25):5034-5037.
doi: 10.1103/PhysRevLett.79.5034
[29]   Yu Y S, Zhang L F, Eisenberg L . Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules, 1998,31(4):1144-1154.
doi: 10.1021/ma971254g
[30]   Shen H W, Eisenberg A . Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O. Macromolecules, 2000,33(7):2561-2572.
doi: 10.1021/ma991161u
[31]   Discher D E, Eisenberg A . Polymer vesicles. Science, 2002,297(5583):967-73.
doi: 10.1126/science.1074972
[32]   Li S L, Byme B, Welsh J E, Palmer A F . Self-assembled poly(butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers. Biotechnology Progress, 2007,23(1):278-285.
doi: 10.1002/btpr.v22:6
[33]   Mai Y, Eisenberg A . Self-assembly of block copolymers. Chemical Society Reviews, 2012,41(18):5969-5985.
doi: 10.1039/c2cs35115c
[34]   Zhu D, Wu S, Hu C , et al. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomaterialia, 2017,58:399-412.
doi: 10.1016/j.actbio.2017.06.017
[35]   Laskar P, Dey J. Ghosh S K , Spontaneously formed redox- and pH-sensitive polymersomes by mPEG based cytocompatible random copolymers. Journal of Colloid Interface Science, 2017,501:122-133.
[36]   Laskar P, Dey J, Banik P , et al. In vitro drug and gene delivery using random cationic copolymers forming stable and pH-sensitive polymersomes. Macromolecular Bioscience, 2017,17(4):1-14.
[37]   Sanchez-Purra M, Ramos V, Petrenko V A , et al. Double-targeted polymersomes and liposomes for multiple barrier crossing. International Journal of Pharmaceutics, 2016,511(2):946-956.
doi: 10.1016/j.ijpharm.2016.08.001
[38]   Li X, Yang W, Zou Y , et al. Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes. Journal of Control Release, 2015,220:704-714.
doi: 10.1016/j.jconrel.2015.08.058
[39]   Meng F H, Zhong Y N, Cheng R , et al. pH-sensitive polymeric nanoparticles for tumor-targeting Doxoubicin delivery: concept and recent advances. Nanomedicine, 2014,9(3):487-499.
doi: 10.2217/nnm.13.212
[40]   Danafar H, Rostamizadeh K, Davaran S , et al. PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril. Drug Development and Industrial Pharmacy, 2014,40(10):1411-1420.
doi: 10.3109/03639045.2013.828223
[41]   Chen C Y, Wang H L . Dual thermo- and pH-responsive zwitterionic sulfobataine copolymers for oral delivery system. Macromolecular Rapid Communications, 2014,35(17):1534-1540.
doi: 10.1002/marc.v35.17
[42]   Li G, Guo L, Wen Q , et al. Thermo- and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release. International Journal of Biological Macromolecules, 2013,55:69-74.
doi: 10.1016/j.ijbiomac.2012.12.048
[43]   He C, Zhuang X, Tang Z , et al. Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Advanced Healthcare Materials, 2012,1(1):48-78.
doi: 10.1002/adhm.201100008
[44]   Wang Y, Gao S, Ye W H , et al. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self assembled from a biodegradable copolymer. Nature Materials, 2006,5(10):791-796.
[45]   Xiong X Y, Li Q H, Li Y P , et al. Pluronic P85/poly(lactic acid) vesicles as novel carrier for oral insulin delivery. Colloids and Surfaces B: Biointerfaces, 2013,111:282-288.
doi: 10.1016/j.colsurfb.2013.06.019
[46]   Chu B, Zhang L, Qu Y , et al. Synthesis, characterization and drug loading property of monomethoxy poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(D,L-lactide) (MPEG-PCLA) copolymers. Scientific Reports, 2016,6:34069.
doi: 10.1038/srep34069
[47]   Kang S W, Li Y, Park J H , et al. pH-triggered unimer/vesicle-transformable and biodegradable polymersomes based on PEG-b-PCL-grafted poly(β-amino ester) for anti-cancer drug delivery. Polymer, 2013,54(1):102-110.
doi: 10.1016/j.polymer.2012.10.055
[48]   Oliveira H, Perez-Andres E, Thevenot J , et al. Magnetic field triggered drug release from polymersomes for cancer therapeutics. Journal of Control Release, 2013,169(3):165-170.
doi: 10.1016/j.jconrel.2013.01.013
[49]   Car A, Baumann P, Duskey J T , et al. pH-responsive PDMS-b-PDMAEMA micelles for intracellular anticancer drug delivery. Biomacromolecules, 2014,15(9):3235-3245.
doi: 10.1021/bm500919z
[50]   Photos P J, Bacakova L, Discher B , et al. Polymer vesicles in vivo: correlations with PEG molecular weight. Journal of Controlled Release, 2003,90(3):323-334.
doi: 10.1016/S0168-3659(03)00201-3
[51]   Lin T, Fang Q, Peng D , et al. PEGylated non-ionic surfactant vesicles as drug delivery systems for gambogenic acid. Drug Delivery, 2013,20(7):277-284.
doi: 10.3109/10717544.2013.836618
[52]   Yassin M A, Appelhans D, Wiedemuth R , et al. Overcoming concealment effects of targeting moieties in the PEG corona: controlled permeable polymersomes decorated with folate-antennae for selective targeting of tumor cells. Small, 2015,11(13):1580-1591.
doi: 10.1002/smll.v11.13
[53]   Liu F T, Eisenberg A . Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block polystyrene-block-poly(4-vinyl pyridine). Journal of the American Chemical Society, 2003,125(49):15059-15064.
doi: 10.1021/ja038142r
[54]   Bollhorst T, Rezwan K, Maas M . Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chemical Society Reviews, 2017,46(8):2091-2126.
doi: 10.1039/C6CS00632A
[55]   Thambi T, Park J H, Lee D S . Stimuli-responsive polymersomes for cancer therapy. Biomaterial Science, 2016,4(1):55-69.
doi: 10.1039/C5BM00268K
[56]   Brinkhuis R P, Rutjes F P J T, van Hest J C M . Polymeric vesicles in biomedical applications. Polymer Chemistry, 2011,2(7):1449-1462.
doi: 10.1039/c1py00061f
[57]   Gref R, Lu M, Quellec P , et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B: Biointerfaces, 2000,18(3-4):301-313.
doi: 10.1016/S0927-7765(99)00156-3
[58]   Kim P, Kim D H, Kim B , et al. Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion. Nanotechnology, 2005,16(10):2420-2426.
doi: 10.1088/0957-4484/16/10/072
[59]   Jia L, Cui D, Bignon J , et al. Reduction-responsive cholesterol-based block copolymer vesicles for drug delivery. Biomacromolecules, 2014,15(6):2206-2217.
doi: 10.1021/bm5003569
[60]   Kumar A, Lale S V, Aji Alex M R , et al. Folic acid and trastuzumab conjugated redox responsive random multiblock copolymeric nanocarriers for breast cancer therapy: In vitro and in vivo studies. Colloids Surf B Biointerfaces, 2017,149:369-378.
doi: 10.1016/j.colsurfb.2016.10.044
[61]   Liu Q, Song L, Chen S , et al. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials, 2017,11:423-433.
[62]   Zhu J, Xu X, Hu M , et al. Co-encapsulation of combretastatin-A4 phosphate and doxorubicin in polymersomes for synergistic therapy of nasopharyngeal epidermal carcinoma. Journal of Biomedical Nanotechnology, 2015,11(6):997-1006.
doi: 10.1166/jbn.2015.2010
[63]   Wang H, Zhao Y, Wu Y , et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials, 2011,32(32):8281-8290.
doi: 10.1016/j.biomaterials.2011.07.032
[64]   Sun H, Meng F, Cheng R , et al. Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis. Acta Biomaterials, 2014,10(5):2159-2168.
doi: 10.1016/j.actbio.2014.01.010
[65]   Kashyap S, Jayakannan M . Thermo-responsive and shape transformable amphiphilic scaffolds for loading and delivering anticancer drugs. Journal of Materials Chemistry B, 2014,2(26):4142-4152.
doi: 10.1039/c4tb00134f
[66]   Yan Q, Yuan J Y, Cai Z N , et al. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. Journal of the American Chemical Society, 2010,132(27):9268-9270.
doi: 10.1021/ja1027502
[67]   Yang H, Zhang C, Li C , et al. Glucose-responsive polymer vesicles templated by alpha-CD/PEG inclusion complex. Biomacromolecules, 2015,16(4):1372-1381.
doi: 10.1021/acs.biomac.5b00155
[68]   Chen W, Du J . Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery. Scientific Report, 2013,3:2162.
[69]   Lee J S, Deng X, Han P , et al. Dual stimuli-responsive poly(beta-amino ester) nanoparticles for on demand burst release. Macromolecular Bioscience, 2015,15(9):1314-1322.
doi: 10.1002/mabi.201500111
[70]   Nguyen D H, Lee J S, Bae J W , et al. Targeted doxorubicin nanotherapy strongly suppressing growth of multidrug resistant tumor in mice. International Journal of Pharmaceutics, 2015,495(1):329-335.
doi: 10.1016/j.ijpharm.2015.08.083
[71]   Xiong X Y, Tao L, Qin X , et al. Novel folated Pluronic/poly(lactic acid) nanoparticles for targeted delivery of paclitaxel. RSC Advances, 2016,6(58):52729-52738.
doi: 10.1039/C6RA09271C
[72]   Xiong X Y, Guo L, Gong Y C , et al. In vitro & in vivo targeting behaviors of biotinylated Pluronic F127/poly(lactic acid) nanoparticles through biotin-avidin interaction. European Journal of Pharmaceutical Sciences, 2012,46(5):537-544.
doi: 10.1016/j.ejps.2012.04.011
[73]   Webster D M, Sundaram P, Byrne M E . Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 2013,84(1):1-20.
doi: 10.1016/j.ejpb.2012.12.009
[74]   Yu G, Yu W, Shao L , et al. Fabrication of a targeted drug delivery system from a pillar[5]arene-based supramolecular diblock copolymeric amphiphile for effective cancer therapy. Advanced Functional Materials, 2016,26(48):8999-9008.
doi: 10.1002/adfm.v26.48
[75]   Alibolandi M, Alabdollah F, Sadeghi F , et al. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: In vitro and in vivo evaluation. Journal of Control Release, 2016,227:58-70.
doi: 10.1016/j.jconrel.2016.02.031
[76]   Yang J, Hou Y, Ji G , et al. Targeted delivery of the RGD-labeled biodegradable polymersomes loaded with the hydrophilic drug oxymatrine on cultured hepatic stellate cells and liver fibrosis in rats. European Journal of Pharmaceutical Sciences, 2014,52:180-190.
doi: 10.1016/j.ejps.2013.11.017
[1] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[2] CHEN Wen-jie,MIAO Xian-feng. Domestic Research and Development Status of Antibody-drug Conjugates and Strategic Layout of Key Enterprises[J]. China Biotechnology, 2021, 41(6): 105-110.
[3] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[4] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[5] HU Sheng-tao,ZHANG Er-bing,LIN Ye,ZHANG Feng,HUANG Dan,SONG Hou-pan,LIU Bin,CAI Xiong. Research Advances on the Therapy of Rheumatoid Arthritis with the Nanotechnology Based on Transdermal Drug Delivery System[J]. China Biotechnology, 2021, 41(2/3): 98-106.
[6] TANG Yue-wei,LIU Zhi-ping. Drug-target Affinity Prediction Based on Deep Learning and Multi-layered Information Fusion[J]. China Biotechnology, 2021, 41(11): 40-47.
[7] WU You,XIN Lin. New Drug Delivery System: Delivery of Exosomes as Drug Carriers[J]. China Biotechnology, 2020, 40(9): 28-35.
[8] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[9] CAO Meng,ZHAO Yu-hao,GUO Zhong-ping. A Review of the Global Bio-Therapeutics Development Process from the Perspective of International Nonproprietary Names[J]. China Biotechnology, 2020, 40(1-2): 154-165.
[10] XIAO Xue-jun,TANG Qi,XINHUA Nabi. CAR-T Therapy Targeting Tumor Microenvironment[J]. China Biotechnology, 2020, 40(12): 67-74.
[11] Yu-feng ZHANG,Meng-jia XIE,Shu-lei ZHOU,Ling-ling XU,Tie-jun ZHAO. Application of Cell-penetrating Peptides in Tumor Targeted Therapy and Disease Diagnosis[J]. China Biotechnology, 2019, 39(6): 48-54.
[12] Feng LI,Xiao-dong GAO,Hideki NAKANISHI. Analysis of Martrix Targeting Sequence of Human Mitochondrial OGT in Saccharomyces cerevisiae[J]. China Biotechnology, 2019, 39(4): 32-37.
[13] Xi-wen JIANG,Zi-wei DONG,Yue LIU,Xiao-ya ZHU. Reserch Progress on Biomarkers and Precision Medicine[J]. China Biotechnology, 2019, 39(2): 74-81.
[14] SU Yi,JIANG Ling-li,LIN Jun-sheng. Characterization of the Affinity Between Low Molecular Weight Targets and Their Aptamers[J]. China Biotechnology, 2019, 39(11): 96-104.
[15] MING Jin-yu, LI Hua-dan, LIANG Shi-bo, HE Li, YU Qin-han, LI Ji-lin, ZHANG Yan-ming. Research Progress in the Development of Plant Functional Target Gene Markers[J]. China Biotechnology, 2017, 37(3): 83-91.