Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (5): 81-90    DOI: 10.13523/j.cb.2112019
    
Research Progress of Intelligent Insulin Delivery System for Diabetes Treatment
ZHAO Bing1,2,MA Chun-bo1,2,3,SUN Bing-bing4,ZHAO Hai-yang1,2,*()
1 Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
2 Wenzhou Biomedical Collaborative Innovation Center, Wenzhou 325035, China
3 The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, China
4 Chemical Engineering Institute,Dalian University of Technology, Dalian 116000, China
Download: HTML   PDF(2366KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Diabetes is the third most harmful disease to human health after cancer and cardiovascular disease. Treatment for type 1 or type 2 diabetes requires daily injections or continuous infusion of exogenous insulin to regulate blood sugar in the body to normal levels. However, current insulin treatments are limited by the risk of hypoglycemia. Through the application of a delivery system based on biomaterial carriers, the bioavailability of insulin can be improved while the occurrence of adverse reactions can be reduced.Therefore, the research and development based on an intelligent insulin delivery system is necessary to improve the controllability of insulin administration. This paper reviews different methods of insulin delivery in recent years. The mechanism of an intelligent insulin delivery system was described, and the research status and existing problems of intelligent insulin delivery systems under different drug delivery methods were discussed.



Key wordsDiabetes      Insulin      Intelligent insulin delivery system      Blood glucose     
Received: 15 January 2022      Published: 17 June 2022
ZTFLH:  Q819  
Corresponding Authors: Hai-yang ZHAO     E-mail: zwu@jiangnan.edu.cn
Cite this article:

ZHAO Bing,MA Chun-bo,SUN Bing-bing,ZHAO Hai-yang. Research Progress of Intelligent Insulin Delivery System for Diabetes Treatment. China Biotechnology, 2022, 42(5): 81-90.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2112019     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I5/81

Fig.1 Schematic diagram of treating DM with intelligent insulin delivery system in different drug delivery routes
给药途径 优点 缺点 参考文献
口服给药 无创无痛、依从性高、便宜便携 生物利用度低 [12-15]
鼻腔给药 无创无痛、避免首过效应 黏液纤毛清除药物速度快、剂量分布不均匀 [16-17]
经皮给药 给药方便、依从性好 潜在皮肤感染、给药剂量不精确 [25-27]
皮下注射 低成本、高吸收 依从性不足、低血糖风险、注射部位疼痛 [5-9]
静脉注射 快速降低血糖浓度 低血糖风险 [28]
Table 1 Advantages and disadvantages of different insulin administration methods
Fig.2 Development of insulin and its intelligent delivery system
Fig.3 Schematic diagram of intelligent insulin delivery system
[1]   Ma Q, Zhao X, Shi A H, et al. Bioresponsive functional phenylboronic acid-based delivery system as an emerging platform for diabetic therapy. International Journal of Nanomedicine, 2021, 16: 297-314.
doi: 10.2147/IJN.S284357
[2]   Schmidt A M. Highlighting diabetes mellitus: the epidemic continues. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38(1): e1-e8.
[3]   Umpierrez G, Korytkowski M. Diabetic emergencies:ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nature Reviews Endocrinology, 2016, 12 (4): 222-232.
doi: 10.1038/nrendo.2016.15
[4]   Edward J. International Diabetes Federation Diabetes Atlas 10th edition, 2021. [2022-01-11]. https://diabetesatlas.org/atlas/tenth-edition/.
[5]   Karimi S, Jaafari A, Ghamari M, et al. A comparison of type II diabetic patients with healthy people: coping strategies, hardiness, and occupational life quality. International Journal of High Risk Behaviors & Addiction, 2016, 5(1): e24169.
[6]   Azuma K, Kawamori R, Toyofuku Y, et al. Repetitive fluctuations in blood glucose enhance monocyte adhesion to the endothelium of rat thoracic aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26(10): 2275-2280.
doi: 10.1161/01.ATV.0000239488.05069.03
[7]   Kahkoska A R, Buse J B. Primum non nocere: refocusing our attention on severe hypoglycemia prevention. Diabetes Care, 2018, 41(8): 1557-1559.
doi: 10.2337/dci18-0020 pmid: 30030257
[8]   Investigators T N S S. Hypoglycemia and risk of death in critically ill patients. New England Journal of Medicine, 2012, 367(12): 1108-1118.
doi: 10.1056/NEJMoa1204942
[9]   Sung H W, Sonaje K, Liao Z X, et al. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Accounts of Chemical Research, 2012, 45(4): 619-629.
doi: 10.1021/ar200234q
[10]   Zhao L, Huang Q W, Liu Y Y, et al. Boronic acid as glucose-sensitive agent regulates drug delivery for diabetes treatment. Materials (Basel, Switzerland), 2017, 10(2): 170.
[11]   Hashemi N, Valk T, Houlind K, et al. Insulin-based infusion system: preliminary study. Journal of Diabetes Science and Technology, 2019, 13(5): 935-940.
doi: 10.1177/1932296818821349 pmid: 30678470
[12]   Iyer H, Khedkar A, Verma M. Oral insulin: a review of current status. Diabetes, Obesity and Metabolism, 2010, 12(3): 179-185.
doi: 10.1111/j.1463-1326.2009.01150.x
[13]   Owens D R, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabetic Medicine, 2003, 20(11): 886-898.
pmid: 14632713
[14]   Wong C Y, Martinez J, Dass C R. Oral delivery of insulin for treatment of diabetes: status quo, challenges and opportunities. Journal of Pharmacy and Pharmacology, 2016, 68(9): 1093-1108.
doi: 10.1111/jphp.12607
[15]   Mitragotri S, Burke P A, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nature Reviews Drug Discovery, 2014, 13 (9): 655-672.
doi: 10.1038/nrd4363 pmid: 25103255
[16]   Thwala L N, Préat V, Csaba N S. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opinion on Drug Delivery, 2017, 14(1): 23-36.
doi: 10.1080/17425247.2016.1206074
[17]   Chugh Y, Kapoor P, Kapoor A K. Intranasal drug delivery: a novel approach. Indian Journal of Otolaryngology and Head and Neck Surgery, 2009, 61(2): 90-94.
doi: 10.1007/s12070-009-0044-2
[18]   Khafagy E S, Morishita M, Onuki Y, et al. Current challenges in non-invasive insulin delivery systems: a comparative review. Advanced Drug Delivery Reviews, 2007, 59(15): 1521-1546.
pmid: 17881081
[19]   Antunes E, Cavaco-Paulo A. Stratum corneum lipid matrix with unusual packing: a molecular dynamics study. Colloids and Surfaces B: Biointerfaces, 2020, 190: 110928.
doi: 10.1016/j.colsurfb.2020.110928 pmid: 32179416
[20]   Opatha S A T, Titapiwatanakun V, Chutoprapat R. Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 2020, 12(9): 855.
doi: 10.3390/pharmaceutics12090855
[21]   KováČik A, KopeČná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opinion on Drug Delivery, 2020, 17(2): 145-155.
doi: 10.1080/17425247.2020.1713087
[22]   Priya B, Rashmi T, Bozena M. Transdermal iontophoresis. Expert Opinion on Drug Delivery, 2006, 3(1): 127-138.
doi: 10.1517/17425247.3.1.127
[23]   Ita K. Perspectives on transdermal electroporation. Pharmaceutics, 2016, 8(1): 9.
doi: 10.3390/pharmaceutics8010009
[24]   Mitragotri S, Blankschtein D, Langer R. Transdermal drug delivery using low-frequency sonophoresis. Pharmaceutical Research, 1996, 13(3): 411-420.
pmid: 8692734
[25]   Jin X, Zhu D D, Chen B Z, et al. Insulin delivery systems combined with microneedle technology. Advanced Drug Delivery Reviews, 2018, 127: 119-137.
doi: 10.1016/j.addr.2018.03.011
[26]   Sivamani R K, Stoeber B, Wu G C, et al. Clinical microneedle injection of methyl nicotinate: stratum corneum penetration. Skin Research and Technology, 2005, 11(2): 152-156.
pmid: 15807814
[27]   Kaushik S, Hord A H, Denson D D, et al. Lack of pain associated with microfabricated microneedles. Anesthesia and Analgesia, 2001, 92(2): 502-504.
pmid: 11159258
[28]   Gomaa Y A, Morrow D I J, Garland M J, et al. Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicology in Vitro, 2010, 24(7): 1971-1978.
doi: 10.1016/j.tiv.2010.08.012
[29]   Brownlee M, Cerami A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science, 1979, 206(4423): 1190-1191.
pmid: 505005
[30]   Ishihara K, Kobayashi M, Ishimaru N, et al. Glucose induced permeation control of insulin through a complex membrane consisting of immobilized glucose oxidase and a poly(amine). Polymer Journal, 1984, 16 (8): 625-631.
doi: 10.1295/polymj.16.625
[31]   Seminoff L A, Gleeson J M, Zheng J, et al. A self-regulating insulin delivery system. II. in vivo characteristics of a synthetic glycosylated insulin. International Journal of Pharmaceutics, 1989, 54(3): 251-257.
doi: 10.1016/0378-5173(89)90102-6
[32]   Shiino D, Murata Y, Kataoka K, et al. Preparation and characterization of a glucose-responsive insulin-releasing polymer device. Biomaterials, 1994, 15(2): 121-128.
pmid: 8011858
[33]   Zhao L, Xiao C S, Wang L Y, et al. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chemical Communications (Cambridge, England), 2016, 52(49): 7633-7652.
doi: 10.1039/C6CC02202B
[34]   Kost J, Langer R. Responsive polymeric delivery systems. Advanced Drug Delivery Reviews, 2001, 46(1-3): 125-148.
pmid: 11259837
[35]   Wu Q, Wang L, Yu H J, et al. Organization of glucose-responsive systems and their properties. Chemical Reviews, 2011, 111(12): 7855-7875.
doi: 10.1021/cr200027j
[36]   Shen D, Yu H J, Wang L, et al. Recent progress in design and preparation of glucose-responsive insulin delivery systems. Journal of Controlled Release, 2020, 321: 236-258.
doi: S0168-3659(20)30091-2 pmid: 32061789
[37]   Veiseh O, Tang B C, Whitehead K A, et al. Managing diabetes with nanomedicine: challenges and opportunities. Nature Reviews Drug Discovery, 2015, 14 (1): 45-57.
doi: 10.1038/nrd4477 pmid: 25430866
[38]   Keilin D, Hartree E F. Properties of glucose oxidase (notatin): Addendum. Sedimentation and diffusion of glucose oxidase (notatin). The Biochemical Journal, 1948, 42(2): 221-229.
[39]   Wang J Q, Ye Y Q, Yu J C, et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano, 2018, 12(3): 2466-2473.
doi: 10.1021/acsnano.7b08152
[40]   Tanna S, Taylor M J, Sahota T S, et al. Glucose-responsive UV polymerised dextran-concanavalin A acrylic derivatised mixtures for closed-loop insulin delivery. Biomaterials, 2006, 27(8): 1586-1597.
doi: 10.1016/j.biomaterials.2005.08.011
[41]   Edelman G M, Cunningham B A, Reeke G N Jr, et al. The covalent and three-dimensional structure of concanavalin A. Proceedings of the National Academy of Sciences of the United States of America, 1972, 69(9): 2580-2584.
[42]   Liu F, Song S C, Mix D, et al. Glucose-induced release of glycosylpoly(ethylene glycol) insulin bound to a soluble conjugate of concanavalin A. Bioconjugate Chemistry, 1997, 8(5): 664-672.
pmid: 9327129
[43]   VandenBerg M A, Webber M J. Biologically inspired and chemically derived methods for glucose-responsive insulin therapy. Advanced Healthcare Materials, 2019, 8(12): 1801466.
doi: 10.1002/adhm.201801466
[44]   Bapat A P, Roy D, Ray J G, et al. Dynamic-covalent macromolecular stars with boronic ester linkages. Journal of the American Chemical Society, 2011, 133(49): 19832-19838.
doi: 10.1021/ja207005z
[45]   Springsteen G, Wang B H. A detailed examination of boronic acid-diol complexation. Tetrahedron, 2002, 58(26): 5291-5300.
doi: 10.1016/S0040-4020(02)00489-1
[46]   Cambre J N, Sumerlin B S. Biomedical applications of boronic acid polymers. Polymer, 2011, 52(21): 4631-4643.
doi: 10.1016/j.polymer.2011.07.057
[47]   Ma R J, Shi L Q. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem, 2014, 5(5): 1503-1518.
doi: 10.1039/C3PY01202F
[48]   Zeng Z Y, Qi D M, Yang L, et al. Stimuli-responsive self-assembled dendrimers for oral protein delivery. Journal of Controlled Release, 2019, 315: 206-213.
doi: 10.1016/j.jconrel.2019.10.049
[49]   Sun L, Zhang X G, Wu Z M, et al. Oral glucose- and pH-sensitive nanocarriers for simulating insulin release in vivo. Polym Chem, 2014, 5(6): 1999-2009.
doi: 10.1039/C3PY01416A
[50]   Luo F Q, Chen G J, Xu W, et al. Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery. Nano Research, 2021, 14(8): 2689-2696.
doi: 10.1007/s12274-020-3273-z
[51]   Situ W B, Li X X, Liu J, et al. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery. Journal of Agricultural and Food Chemistry, 2015, 63(16): 4138-4147.
doi: 10.1021/acs.jafc.5b00393
[52]   Zheng C, Guo Q Q, Wu Z M, et al. Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins. European Journal of Pharmaceutical Sciences, 2013, 49(4): 474-482.
doi: 10.1016/j.ejps.2013.04.027 pmid: 23648782
[53]   Wei X S, Duan X Z, Zhang Y F, et al. Internalization mechanism of phenylboronic-acid-decorated nanoplatform for enhanced nasal insulin delivery. ACS Applied Bio Materials, 2020, 3(4): 2132-2139.
doi: 10.1021/acsabm.0c00002
[54]   Gill H S, Prausnitz M R. Coated microneedles for transdermal delivery. Journal of Controlled Release, 2007, 117(2): 227-237.
doi: 10.1016/j.jconrel.2006.10.017
[55]   Ullah A, Choi H J, Jang M, et al. Smart microneedles with porous polymer layer for glucose-responsive insulin delivery. Pharmaceutics, 2020, 12(7): 606.
doi: 10.3390/pharmaceutics12070606
[56]   张宇琪, 俞计成, 沈群东, 等. 随葡萄糖响应的合成类闭路胰岛素递释系统. 化学进展, 2015, 27(1): 11-26.
doi: 10.7536/PC140942
[56]   Zhang Y Q, Yu J C, Shen Q D, et al. Glucose-responsive synthetic closed-loop insulin delivery systems. Progress in Chemistry, 2015, 27(1): 11-26.
doi: 10.7536/PC140942
[57]   Chen S Y, Matsumoto H, Moro-oka Y, et al. Microneedle-array patch fabricated with enzyme-free polymeric components capable of on-demand insulin delivery. Advanced Functional Materials, 2019, 29(7): 1807369.
doi: 10.1002/adfm.201807369
[58]   Yu J C, Zhang Y Q, Ye Y Q, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. PNAS, 2015, 112(27): 8260-8265.
doi: 10.1073/pnas.1505405112
[59]   Xu B, Cao Q Y, Zhang Y, et al. Microneedles integrated with ZnO quantum-dot-capped mesoporous bioactive glasses for glucose-mediated insulin delivery. ACS Biomaterials Science & Engineering, 2018, 4(7): 2473-2483.
[60]   Tong Z Z, Zhou J Y, Zhong J X, et al. Glucose- and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats. ACS Applied Materials & Interfaces, 2018, 10(23): 20014-20024.
[61]   Gu Z, Aimetti A A, Wang Q, et al. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano, 2013, 7(5): 4194-4201.
doi: 10.1021/nn400630x
[62]   Li X, Fu M, Wu J et al. pH-sensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater, 2017, 51: 294-303.
doi: 10.1016/j.actbio.2017.01.016
[63]   Kim M Y, Kim J. Chitosan microgels embedded with catalase nanozyme-loaded mesocellular silica foam for glucose-responsive drug delivery. ACS Biomaterials Science & Engineering, 2017, 3(4): 572-578.
[64]   Hou L, Zheng Y Z, Wang Y C, et al. Self-regulated carboxyphenylboronic acid-modified mesoporous silica nanoparticles with “touch switch” releasing property for insulin delivery. ACS Applied Materials & Interfaces, 2018, 10(26): 21927-21938.
[65]   Zhang L, Wang Z Z, Zhang Y, et al. Erythrocyte membrane cloaked metal-organic framework nanoparticle as biomimetic nanoreactor for starvation-activated colon cancer therapy. ACS Nano, 2018, 12(10): 10201-10211.
doi: 10.1021/acsnano.8b05200 pmid: 30265804
[66]   Xia D L, He H, Wang Y, et al. Ultrafast glucose-responsive, high loading capacity erythrocyte to self-regulate the release of insulin. Acta Biomaterialia, 2018, 69: 301-312.
doi: 10.1016/j.actbio.2018.01.029
[67]   He M Y, Yu P, Hu Y L, et al. Erythrocyte-membrane-enveloped biomineralized metal-organic framework nanoparticles enable intravenous glucose-responsive insulin delivery. ACS Applied Materials & Interfaces, 2021, 13(17): 19648-19659.
[1] GAN Qiao, MENG Qing-xiong. Intestinal Microflora and Its Metabolites in Relation to the Pathogenesis and Intervention of T2DM[J]. China Biotechnology, 2022, 42(3): 62-71.
[2] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[3] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[4] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[5] Shi-ying DANG,Yi MA,Tao WEN,Xing XIAO,An HONG. Preparation of Nanometer Composite Peptide SCM and Its Therapeutic Effect on Type II Diabetes[J]. China Biotechnology, 2018, 38(5): 17-23.
[6] Qiu-xia YAN,Yi MA,An HONG. Research Progress of Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) as a New Potential Therapeutic Peptide in Diabetes and Its Complications[J]. China Biotechnology, 2018, 38(1): 62-68.
[7] SUN Yi-ping, WANG Yue, JIN Zhen, WANG Xiao-yan, SUN Lei, ZHANG Xuan, FENG Chong, ZHOU Xiao-hua. Establishment and Phenotype Analysis of SHBG Knockout Mouse Model[J]. China Biotechnology, 2017, 37(8): 39-45.
[8] LI Yan-wei, MA Yi, HAN Lei, XIAO Xing, DANG Shi-ying, WEN Tao, WANG De-hua, FAN Zhi-yong. A Preliminary Study on Fas Apoptosis Inhibitory Molecule FAIM 1 Inducing and Simple Obesity[J]. China Biotechnology, 2017, 37(6): 37-42.
[9] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[10] MA Yi, LUO Tian-jie, HONG An. Preparation of the Novel Recombinant VPAC2 Receptor Agonist RD and Its Molecular Mechanism of Promoteing Insulin Fuction[J]. China Biotechnology, 2014, 34(11): 60-66.
[11] LI Chuan-bao, HUA Tian, DU Hong-wu. Different Influences Between Long-term Treated IGF-Ⅰand MGF About Glycometabolism in Mice[J]. China Biotechnology, 2012, 32(04): 7-11.
[12] DU Cai-he, HU Fang, WEI Ting-ting, ZHANG Ren-min, ZHANG Hong-lin, ZHOU Dong-rui, LU Zu-hong. Analysis of the Bacterial Community in Gastric Samples from Mice with TypeⅡDiabetes by Using PCR-DGGE Fingerprint[J]. China Biotechnology, 2012, 32(03): 25-31.
[13] YUAN Feng-shan, WANG Chang-jun, DONG Fei, ZHAO Yu-hang. The Therapeutic Effect of the Induced Insulin Secreting Cells on Rat Diabetes[J]. China Biotechnology, 2011, 31(5): 94-98.
[14] . The Therapeutic Effect of the Induced Insulin Secreting Cells on Rat Diabetes[J]. China Biotechnology, 2011, 31(05): 0-0.
[15] LIU Yan-jie, JI Hong, LIN Lu-xia, ZANG Xue-zhang, SONG Chang-zheng, RONG Hai-qin. Solid Phase Peptide Synthesis and Analysis for Exendin-4[J]. China Biotechnology, 2011, 31(02): 69-73.