Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (10): 57-64    DOI: 10.13523/j.cb.2006033
    
Research Progress of Polydopamine Modified Polymers in Nerve Repair
LIU Zi-ru,ZHANG Tian()
School of Chemistry,Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
Download: HTML   PDF(965KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Inspired by the adhesion of mussels, the researchers found that dopamine self-polymerizes to form polydopamine under alkaline conditions. Due to its strong adhesion properties, polydopamine has been widely used to modify various biological materials in the past few years. Most of the materials used in nerve repair are polymers, but the effect of using polymers alone to repair nerves is not good. Polydopamine modified polymers have better hydrophilicity and biocompatibility than single polymers. In addition, the polydopamine coating on the polymer can be used to further modify the molecules that promote nerve repair. This article reviews the synthesis mechanism and performance of polydopamine and the research progress of polydopamine-modified polymers in nerve repair, and at the end of the article, the development prospects of such materials are prospected.



Key wordsPolydopamine      Polymer      Nerve repair     
Received: 22 June 2020      Published: 10 November 2020
ZTFLH:  R318.08  
Corresponding Authors: Tian ZHANG     E-mail: tzhang@whut.edu.cn
Cite this article:

LIU Zi-ru,ZHANG Tian. Research Progress of Polydopamine Modified Polymers in Nerve Repair. China Biotechnology, 2020, 40(10): 57-64.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2006033     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I10/57

Fig.1 Schematic diagram of polydopamine modified polymer material
[1]   Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: from fabrication of nerve conduit to in vivo nerve regeneration assays. Journal of Tissue Engineering and Regenerative Medicine, 2019,13(11):2077-2100.
doi: 10.1002/term.2945 pmid: 31350868
[2]   Braga Silva J, Marchese G M, Cauduro C G, et al. Nerve conduits for treating peripheral nerve injuries: a systematic literature review. Hand Surgery and Rehabilitation, 2017,36(2):71-85.
doi: 10.1016/j.hansur.2016.10.212 pmid: 28325431
[3]   Raza C, Riaz H A, Anjum R, et al. Repair strategies for injured peripheral nerve: review. Life Sciences, 2020,243:117308.
doi: 10.1016/j.lfs.2020.117308 pmid: 31954163
[4]   Houshyar S, Bhattacharyya A, Shanks R. Peripheral nerve conduit: materials and structures. ACS Chemical Neuroscience, 2019,10(8):3349-3365.
doi: 10.1021/acschemneuro.9b00203 pmid: 31273975
[5]   Belkas J S, Shoichet M S, Midha R. Peripheral nerve regeneration through guidance tubes. Neurological Research, 2004,26(2):151-160.
doi: 10.1179/016164104225013798 pmid: 15072634
[6]   Sarker M, Naghieh S, Mcinnes A D, et al. Strategic design and fabrication of nerve guidance conduits for peripheral nerve regeneration. Biotechnology Journal, 2018,13(7):1700635.
[7]   Muheremu A, Ao Q. Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. BioMed Research International, 2015,2015:237507.
doi: 10.1155/2015/237507 pmid: 26491662
[8]   Rebowe R, Rogers A, Yang X, et al. Nerve repair with nerve conduits: problems, solutions, and future directions. Journal of Hand and Microsurgery, 2018,10(2):61-65.
doi: 10.1055/s-0038-1626687 pmid: 30154617
[9]   Zhou C, Liu B, Huang Y, et al. The effect of four types of artificial nerve graft structures on the repair of 10-mm rat sciatic nerve gap. Journal of Biomedical Materials Research Part A, 2017,105(11):3077-3085.
doi: 10.1002/jbm.a.36172 pmid: 28782192
[10]   Sarker M D, Naghieh S, Mcinnes A D, et al. Regeneration of peripheral nerves by nerve guidance conduits: influence of design, biopolymers, cells, growth factors, and physical stimuli. Progress in Neurobiology, 2018,171:125-150.
doi: 10.1016/j.pneurobio.2018.07.002 pmid: 30077776
[11]   Ryu J H, Messersmith P B, Lee H. Polydopamine surface chemistry: a decade of discovery. ACS Applied Materials & Interfaces, 2018,10(9):7523-7540.
doi: 10.1021/acsami.7b19865 pmid: 29465221
[12]   Kang S M, You I, Cho W K, et al. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angewandte Chemie International Edition, 2010,49(49):9401-9404.
doi: 10.1002/anie.201004693 pmid: 21031386
[13]   Liang R P, Meng X Y, Liu C M, et al. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis, 2011,32(23):3331-3340.
doi: 10.1002/elps.201100403 pmid: 22134977
[14]   Silverman H G, Roberto F F. Understanding marine mussel adhesion. Marine Biotechnology (New York, N.Y.), 2007,9(6):661-681.
[15]   Madhurakkat Perikamana S K, Lee J, Lee Y B, et al. Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromolecules, 2015,16(9):2541-2555.
doi: 10.1021/acs.biomac.5b00852 pmid: 26280621
[16]   Kwon I S, Bettinger C J. Polydopamine nanostructures as biomaterials for medical applications. Journal of Materials Chemistry B, 2018,6(43):6895-6903.
doi: 10.1039/C8TB02310G pmid: 31105962
[17]   Lee H, Lee Y, Statz A R, et al. Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Advanced Materials, 2008,20(9):1619-1623.
doi: 10.1002/(ISSN)1521-4095 pmid: 22228925
[18]   Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007,318(5849):426-430.
doi: 10.1126/science.1147241 pmid: 17947576
[19]   陈丽娟, 汪君, 闫叶寒, 等. 聚多巴胺涂层的研究与应用进展. 高分子通报, 2018(07):42-49.
[19]   Chen L J, Wang J, Yan Y H, et al. The progress of research and application of polydopamine coatings. Polymer Bulletin, 2018(7):42-49.
[20]   Wei Q, Zhang F, Li J, et al. Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry, 2010,1(9):1430-1433.
[21]   Ding Y H, Floren M, Tan W. Mussel-inspired polydopamine for bio-surface functionalization. Biosurf Biotribol, 2016,2(4):121-136.
doi: 10.1016/j.bsbt.2016.11.001 pmid: 29888337
[22]   Lee H A, Ma Y, Zhou F, et al. Material-independent surface chemistry beyond polydopamine coating. Accounts of Chemical Research, 2019,52(3):704-713.
doi: 10.1021/acs.accounts.8b00583 pmid: 30835432
[23]   D’ischia M, Napolitano A, Pezzella A, et al. Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angewandte Chemie International Edition, 2009,48(22):3914-3921.
doi: 10.1002/anie.200803786 pmid: 19294706
[24]   Dreyer D R, Miller D J, Freeman B D, et al. Elucidating the structure of poly(dopamine). Langmuir, 2012,28(15):6428-6435.
doi: 10.1021/la204831b pmid: 22475082
[25]   Hong S, Na Y S, Choi S, et al. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Advanced Functional Materials, 2012,22(22):4711-4717.
[26]   赵晨旭, 谢银红, 廖芝建, 等. 聚多巴胺对材料表面功能化的研究及应用进展. 高分子通报, 2015(12):28-37.
[26]   Zhao C X, Xie Y H, Liao Z J, et al. The research and application progress of polydopamine on the material surface functionalization. Polymer Bulletin, 2015(12):28-37.
[27]   Sever M J, Weisser J T, Monahan J, et al. Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angewandte Chemie International Edition, 2004,43(4):448-450.
doi: 10.1002/anie.200352759 pmid: 14735531
[28]   Ye Q, Zhou F, Liu W. Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews, 2011,40(7):4244-4258.
doi: 10.1039/c1cs15026j pmid: 21603689
[29]   Lee H, Scherer N F, Messersmith P B. Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 2006,103(35):12999-13003.
[30]   Yang H, Lan Y, Zhu W, et al. Polydopamine-coated nanofibrous mats as a versatile platform for producing porous functional membranes. Journal of Materials Chemistry, 2012,22(33):16994-17001.
[31]   Ku S H, Ryu J, Hong S K, et al. General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials, 2010,31(9):2535-2541.
doi: 10.1016/j.biomaterials.2009.12.020 pmid: 20061015
[32]   Ku S H, Park C B. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials, 2010,31(36):9431-9437.
doi: 10.1016/j.biomaterials.2010.08.071 pmid: 20880578
[33]   刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用. 化学进展, 2015,27(Z1):212-219.
[33]   Liu Z G, Qu S X, Weng J. Application of polydopamine in surface modification of biomaterials. Progress in Chemistry, 2015,27(Z1):212-219.
[34]   Ou J, Wang J, Liu S, et al. Microtribological and electrochemical corrosion behaviors of polydopamine coating on APTS-SAM modified Si substrate. Applied Surface Science, 2009,256(3):894-899.
[35]   Shin Y M, Lee Y B, Shin H. Time-dependent mussel-inspired functionalization of poly(l-lactide-co-ε-caprolactone) substrates for tunable cell behaviors. Colloids and Surfaces B: Biointerfaces, 2011,87(1):79-87.
doi: 10.1016/j.colsurfb.2011.05.004 pmid: 21605961
[36]   Lin S, Chen C-T, Bdikin I, et al. Tuning heterogeneous poly(dopamine) structures and mechanics: in silico covalent cross-linking and thin film nanoindentation. Soft Matter, 2014,10(3):457-464.
doi: 10.1039/c3sm51810h pmid: 24651666
[37]   Bourmaud A, Riviere J, Le Duigou A, et al. Investigations of the use of a mussel-inspired compatibilizer to improve the matrix-fiber adhesion of a biocomposite. Polymer Testing, 2009,28(6):668-672.
[38]   Luo R, Tang L, Zhong S, et al. In vitro investigation of enhanced hemocompatibility and endothelial cell proliferation associated with quinone-rich polydopamine coating. ACS Applied Materials & Interfaces, 2013,5(5):1704-1714.
doi: 10.1021/am3027635 pmid: 23384031
[39]   Liu Y, Ai K, Liu J, et al. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Advanced Materials, 2013,25(9):1353-1359.
doi: 10.1002/adma.201204683 pmid: 23280690
[40]   Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 2014,114(9):5057-5115.
doi: 10.1021/cr400407a pmid: 24517847
[41]   Bettinger C J, Bruggeman J P, Misra A, et al. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials, 2009,30(17):3050-3057.
doi: 10.1016/j.biomaterials.2009.02.018 pmid: 19286252
[42]   Jia X, Ma Z Y, Zhang G X, et al. Polydopamine film coated controlled-release multielement compound fertilizer based on mussel-inspired chemistry. Journal of Agricultural and Food Chemistry, 2013,61(12):2919-2924.
doi: 10.1021/jf3053059 pmid: 23464683
[43]   Ball V. Composite materials and films based on melanins, polydopamine, and other catecholamine-based materials. Biomimetics, 2017,2(3).
doi: 10.3390/biomimetics2030009 pmid: 31105172
[44]   Darsalia V, Kallur T, Kokaia Z. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. European Journal of Neuroscience, 2007,26(3):605-614.
doi: 10.1111/j.1460-9568.2007.05702.x pmid: 17686040
[45]   Ziv Y, Avidan H, Pluchino S, et al. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proceedings of the National Academy of Sciences, 2006,103(35):13174-13179.
[46]   崔学文, 陆浩, 吕德民, 等. SHH修饰聚多巴胺涂层纤维蛋白支架对大鼠神经干细胞的影响. 神经解剖学杂志, 2020,36(1):15-22.
[46]   Cui X W, Lu H, Lv D M, et al. Polydopamine-mediated surface modification of fibrin scaffold with SHH coating for rat neural stem cell engineering. Chinese Journal of Neuroanatomy, 2020,36(1):15-22.
[47]   Yang K, Lee J S, Kim J, et al. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 2012,33(29):6952-6964.
doi: 10.1016/j.biomaterials.2012.06.067 pmid: 22809643
[48]   齐治平, 杨利丽, 潘肃, 等. 聚多巴胺改性的纺丝膜复合胰岛素样生长因子-1对神经干细胞的作用. 中华实验外科杂志, 2019,36(8):1492.
[48]   Qi Z P, Yang L L, Pan S, et al. The effect of polydopamine modified nanofibers combined with insulin-like growth factors-1 on neural stem cells. Chinese Journal of Experimental Surgery, 2019,36(8):1492.
[49]   Schmidt C E, Leach J B. Neural tissue engineering: strategies for repair and regeneration. Annual Review of Biomedical Engineering, 2003,5(1):293-347.
[50]   Li Y, Huang Z, Pu X, et al. Polydopamine/carboxylic graphene oxide-composited polypyrrole films for promoting adhesion and alignment of Schwann cells. Colloids and Surfaces B: Biointerfaces, 2020,191:110972.
doi: 10.1016/j.colsurfb.2020.110972 pmid: 32203860
[51]   Chen Y W, Chen C C, Ng Y H, et al. Additive manufacturing of nerve decellularized extracellular matrix-contained polyurethane conduits for peripheral nerve regeneration. Polymers, 2019,11(10).
pmid: 31640189
[52]   Chen C C, Yu J, Ng H Y, et al. The physicochemical properties of decellularized extracellular matrix-coated 3D printed poly(ε-caprolactone) nerve conduits for promoting schwann cells proliferation and differentiation. Materials, 2018,11(9).
doi: 10.3390/ma11091767 pmid: 30231563
[53]   Bhang S H, Kwon S H, Lee S, et al. Enhanced neuronal differentiation of pheochromocytoma 12 cells on polydopamine-modified surface. Biochemical and Biophysical Research Communications, 2013,430(4):1294-1300.
doi: 10.1016/j.bbrc.2012.11.123 pmid: 23261471
[54]   Chen C H, Tsai C C, Wu P T, et al. Modulation of neural differentiation through submicron-grooved topography surface with modified polydopamine. ACS Applied Bio Materials, 2018,2(1):205-216.
[55]   Nazeri N, Tajerian R, Arabpour Z, et al. Bioinspired immobilization of carbon nanotubes on scaffolds for nerve regeneration. Bioinspired, Biomimetic and Nanobiomaterials, 2019,8(3):198-205.
[56]   Qian Y, Song J, Zheng W, et al. 3D manufacture of gold nanocomposite channels facilitates neural differentiation and regeneration. Advanced Functional Materials, 2018,28(14):1707077.
[57]   Qian Y, Zhao X, Han Q, et al. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat Commun, 2018,9(1):323.
doi: 10.1038/s41467-017-02598-7 pmid: 29358641
[58]   Kim S, Jang L K, Jang M, et al. Electrically conductive polydopamine-polypyrrole as high performance biomaterials for cell stimulation in vitro and electrical signal recording in vivo. ACS Applied Materials & Interfaces, 2018,10(39):33032-33042.
doi: 10.1021/acsami.8b11546 pmid: 30192136
[59]   Wang Y, Tan H, Hui X. Biomaterial scaffolds in regenerative therapy of the central nervous system. BioMed Research International, 2018,2018:7848901.
doi: 10.1155/2018/7848901 pmid: 29805977
[60]   曹苏成, 徐晓峰, 陈奇, 等. 音猬因子缓释聚多巴胺纤维蛋白支架促进大鼠脊髓损伤的修复. 中国组织工程研究, 2020,24(28):4567-4572.
[60]   Cao S C, Xu X F, Chen Q, et al. Sonic hedgehog-polydopamine-fibrin scaffold promotes recovery of spinal cord injury in rats. Chinese Journal of Tissue Engineering Research, 2020,24(28):4567-4572.
[61]   Pan S, Zhao Y, Qiao X, et al. PLGA porous scaffolds by polydopamine-assisted immobilization of NGF for spinal cord injury repair. Materials Research Express, 2019,6(4):045024.
[62]   Chen S, Liu S, Zhang L, et al. Construction of injectable silk fibroin/polydopamine hydrogel for treatment of spinal cord injury. Chemical Engineering Journal, 2020,399:125795.
[1] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[2] YAN Ge,QIAO Wei-hua,CAO Hong,SHI Jia-wei,DONG Nian-guo. Application of Surface Modification of Polydopamine in Tissue Engineering[J]. China Biotechnology, 2020, 40(12): 75-81.
[3] Wen-jie CAO,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. The Application of Polymersomes in Drug Delivery System[J]. China Biotechnology, 2019, 39(6): 62-72.
[4] Si-nan QIN,Lu-hua TANG,Wen-hui GAO. Preparation of Enrofloxacin Molecular Imprinting Electro- chemical Sensor and Its Application to Rapid Detection of Foods[J]. China Biotechnology, 2019, 39(3): 65-74.
[5] JING Jia-mei,XUN Xin,WANG Min,PENG Ru-chao,SHI Yi. Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions[J]. China Biotechnology, 2019, 39(12): 18-23.
[6] XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering[J]. China Biotechnology, 2018, 38(12): 76-81.
[7] ZHOU Zhong-ting, ZHANG Quan, WANG Sheng-tao, CAI Yin, NAKANISHI Hideki, YIN Jian. Polymeric Nanomicelles Conjugated with BODIPY-based Photosensitizers for Targeted Photodynamic Therapy[J]. China Biotechnology, 2017, 37(10): 33-41.
[8] ZHANG Xin-yuan, DENG Jia, LIU Xin, CHEN Lin, LIN Jun, CAI Wei-wen. Bst DNA Polymerase Large Fragment for Whole Genome Amplification[J]. China Biotechnology, 2016, 36(7): 48-54.
[9] DONG Juan, LI Fo-sheng, LUO Feng-Xue, XIA Fang, ZHU Shu-hua, TANG Lin. Cloning and Expression Analysis of Rice miRNA3026 Promoter and Thioredoxin OsTxnDC9[J]. China Biotechnology, 2016, 36(1): 29-37.
[10] HE Ya-nan, CHEN Xiao-li, REN Xiao-xia, HAO Hai-sheng, QIN Tong, ZHAO Xue-ming, LU Yong-qiang, WANG Dong. Research on Rurification of Mouse Spermatogonial Stem Cells Using Magnetic Microbeads[J]. China Biotechnology, 2014, 34(7): 38-43.
[11] YANG Qi-qi, ZHANG Jun-wei, ZHU Jian, LIU Jian-ping, HUANG Qiang. DNA Polymerase Binding to the Primer/template Duplex Affects the Efficiency of PCR[J]. China Biotechnology, 2014, 34(5): 6-13.
[12] LI Zhi-ying, MU Hong-zhen, GAO Ding-mei, DING Guo-ping, MA Ting, WANG Sheng. Cloning and Analysis of the RNA Polymerase i-Promoter of Nicotiana benthaminana[J]. China Biotechnology, 2014, 34(1): 28-35.
[13] CHEN Kuan-ting, YAO Jun, RUAN Wen-hui, WEI Qin-jun, LU Ya-jie, CAO Xin. Preparation of a Novel Self-assembly Nanoparticle Based on Amphiphilic γ-Polyglutamic Acid Derivatives as a Protein Carrier[J]. China Biotechnology, 2013, 33(4): 101-105.
[14] FENG Chang-zeng, XIE Yue-hui, CAO Yi, MENG Zhao-hui. Purification and Characterization of Pyrroline-5-carboxylate Reductase from Drosophila melanogaster[J]. China Biotechnology, 2012, 32(6): 27-34.
[15] NI Bei-bei, FAN Zhen-zhen, CHEN Hong, HUANG Bing-ren. Fusion Protein Identification as Polymer and Its Analysis of Structure[J]. China Biotechnology, 2012, 32(07): 1-7.