Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (10): 43-50    DOI: 10.13523/j.cb.2005035
    
Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing
WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun()
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
Download: HTML   PDF(936KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

CRISPR/Cas9, a new gene editing technology, mainly modifies the genetic information of organisms at the DNA level and has powerful gene editing ability. Now, it has been widely used in many fields, including gene function research, animal model construction, new breed breeding and gene therapy. The continuous development of CRISPR/Cas9 technology has brought a revolutionary breakthrough in the field of biology and medicine. Using this technology to construct gene mutant mice is not only conducive to the research of gene function, but also has an important reference value for the treatment of genetic diseases. In addition, this technology can effectively improve the production performance of livestock at the molecular level, and improve the disease resistance of livestock. Mainly introduces the research process, structure and classification of CRISPR/Cas system, expounds the mechanism of CRISPR/Cas9 technology and its application in animal gene editing, discusses the problems and optimization strategies of CRISPR/Cas9 in making gene editing animals, and prospects the development of CRISPR/Cas9.



Key wordsCRISPR/Cas9      Gene editing      Animal      Livestock breeding     
Received: 18 May 2020      Published: 10 November 2020
ZTFLH:  Q819  
Corresponding Authors: Dong-jun LIU     E-mail: nmliudongjun@sina.com
Cite this article:

WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing. China Biotechnology, 2020, 40(10): 43-50.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2005035     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I10/43

Fig.1 The basic structure of CRISPR/Cas
[1]   Sander J D, Dahlborg E J, Goodwin M J, et al. Selection-free zinc-finger nuclease engineering by context-dependent assembly (CoDA). Nature Methods, 2011,8(1):67-69.
doi: 10.1038/nmeth.1542 pmid: 21151135
[2]   Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[3]   Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987,169(12):5429-5433.
pmid: 3316184
[4]   Mojica F J M, Juez G, Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol, 1993,9(3):613-621.
doi: 10.1111/j.1365-2958.1993.tb01721.x pmid: 8412707
[5]   Mojica F J M, Diez-Villasenor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol Microbiol, 2000,36(1):244-246.
doi: 10.1046/j.1365-2958.2000.01838.x pmid: 10760181
[6]   Jansen R Embden J D A V Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002,43(6):1565-1575.
doi: 10.1046/j.1365-2958.2002.02839.x pmid: 11952905
[7]   Mojica F J M, Díez-Villasenor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 2005,60(2):174-182.
doi: 10.1007/s00239-004-0046-3 pmid: 15791728
[8]   Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005,151(3):653-663.
[9]   Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008,322(5909):1843-1845.
doi: 10.1126/science.1165771 pmid: 19095942
[10]   Garneau J E, Dupuis M-E, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(7320):67-71.
doi: 10.1038/nature09523 pmid: 21048762
[11]   Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011,471(7340):602-607.
doi: 10.1038/nature09886 pmid: 21455174
[12]   Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 2012,109(39):2579-2586.
[13]   Le C, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1231143 pmid: 23287718
[14]   Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016,540(7631):144-149.
doi: 10.1038/nature20565 pmid: 27851729
[15]   Frieda K L, Linton J M, Hormoz S, et al. Synthetic recording and in situ readout of lineage information in single cells. Nature, 2017,541(7635):107-111.
doi: 10.1038/nature20777 pmid: 27869821
[16]   Deveau H, Garneau J E, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annual Review of Microbiology, 2010,64(1):475-493.
[17]   Shah S A, Erdmann S, Mojica F J, et al. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biology, 2013,10(5):891-899.
doi: 10.4161/rna.23764 pmid: 23403393
[18]   Sorek R, Kunin V, Hugenholtz P. CRISPR- a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Reviews Microbiology, 2008,6(3):181-186.
doi: 10.1038/nrmicro1793 pmid: 18157154
[19]   Makarova K S, Aravind L, Grishin N V, et al. A DNA repair system specific for thermophilic archaea and bacteria predicted by genomic context analysis. Nucleic Acids Research, 2002,30(2):482-496.
doi: 10.1093/nar/30.2.482 pmid: 11788711
[20]   Jinek M, Jiang F, Taylor D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014,343(6176):1247997.
doi: 10.1126/science.1247997 pmid: 24505130
[21]   Sinkunas T, Gasiunas G, Fremaux C, et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. Embo Journal, 2014,30(7):1335-1342.
doi: 10.1038/emboj.2011.41 pmid: 21343909
[22]   Wiedenheft B, van Duijn E, Bultema J B, et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(25):10092-10097.
[23]   Anantharaman V, Iyer L M, Aravind L. Presence of a classical RRM-fold palm domain in Thg1- type 3'- 5' nucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains. Biology Direct, 2010,5(1):43.
[24]   Sapranauskas R, Gasiunas G, Fremaux C, et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 2011,39(21):9275-9282.
doi: 10.1093/nar/gkr606 pmid: 21813460
[25]   Datsenko K A, Pougach K, Tikhonov A, et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nature Communications, 2012,3(1):945.
[26]   Heler R, Samai P, Modell J W, et al. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature, 2015,519(7542):199-202.
doi: 10.1038/nature14245 pmid: 25707807
[27]   Ran F A, Hsu P D, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013,8(2281):308.
[28]   Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015,526(7575):660-665.
doi: 10.1038/nature15514 pmid: 26375003
[29]   Zuckermann M, Hovestadt V, Knobbe-Thomsen C B, et al. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nature Communications, 2015,6:7391.
doi: 10.1038/ncomms8391 pmid: 26067104
[30]   Platt R J, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014,159(2):440-455.
doi: 10.1016/j.cell.2014.09.014 pmid: 25263330
[31]   Carroll K J, Makarewich C A, Mcanally J, et al. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci USA, 2016,113(2):338-343.
doi: 10.1073/pnas.1523918113 pmid: 26719419
[32]   Wang X, Raghavan A, Chen T, et al. CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo. Arteriosclerosis Thrombosis Vascular Biology, 2016,36(5):783.
[33]   Gao X, Tao Y, Lamas V, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature, 2018,553(7687):217-221.
pmid: 29258297
[34]   Yu W, Mookherjee S, Chaitankar V, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nature Communications, 2017,8:14716.
doi: 10.1038/ncomms14716 pmid: 28291770
[35]   Dewitt M A, Magis W, Bray N L, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Science Translational Medicine, 2016,8(360):134.
[36]   Nelson C E, Wu Y, Gemberling M P, et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nature Medicine, 2019,25(3):427-432.
doi: 10.1038/s41591-019-0344-3 pmid: 30778238
[37]   Wang L, Yang Y, White J, et al. CRISPR/Cas9-mediated in vivo gene targeting corrects haemostasis in newborn and adult FIX-KO mice. Blood, 2016,128(22):1174-1174.
[38]   Meng F, Zhao D, Zhou Q, et al. Construction of EZH2 knockout animal model by CRISPR/Cas9 technology. Zhongguo Fei Ai Za Zhi, 2018,21(5):358-364.
doi: 10.3779/j.issn.1009-3419.2018.05.02 pmid: 29764585
[39]   Wang K, Ouyang H, Xie Z, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Scientific Reports, 2015,5:16623.
doi: 10.1038/srep16623 pmid: 26564781
[40]   Crispo M, Mulet A P, Tesson L, et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One, 2015,10(8):e0136690.
pmid: 26305800
[41]   Wang X, Niu Y, Zhou J, et al. CRISPR/Cas9 ediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Animal Genetics, 2018,49(1):43-51.
doi: 10.1111/age.12626 pmid: 29446146
[42]   Liu X, Liu H, Wang M, et al. Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in liang guang small spotted pigs. Transgenic Research, 2019,28(1):141-150.
doi: 10.1007/s11248-018-0107-9 pmid: 30488155
[43]   Xiang G, Ren J, Hai T, et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cellular Molecular Life Sciences, 2018,75(24):4619-4628.
doi: 10.1007/s00018-018-2917-6 pmid: 30259067
[44]   Ni W, Qiao J, Hu S, et al. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One, 2014,9(9):e106718.
doi: 10.1371/journal.pone.0106718 pmid: 25188313
[45]   Zheng Q, Lin J, Huang J, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci U S A, 2017,114(45):e9474-9482.
doi: 10.1073/pnas.1707853114 pmid: 29078316
[46]   Zhou Y, Lin Y, Wu X, et al. The high-level accumulation of n-3 polyunsaturated fatty acids in transgenic pigs harboring the n-3 fatty acid desaturase gene from Caenorhabditis briggsae. Transgenic Research, 2014,23(1):89-97.
doi: 10.1007/s11248-013-9752-1 pmid: 24048769
[47]   Yu S, Luo J, Song Z, et al. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 2011,21(11):1638-1640.
doi: 10.1038/cr.2011.153 pmid: 21912434
[48]   Cui C, Song Y, Liu J, et al. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Scientific Reports, 2015,5:10482.
doi: 10.1038/srep10482 pmid: 25994151
[49]   Jeong Y H, Kim Y J, Kim E Y, et al. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination. Zygote, 2015,24(3):442-456.
doi: 10.1017/S0967199415000374 pmid: 26197710
[50]   Peng J, Wang Y, Jiang J, et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Scientific Reports, 2015,5(16705):1-5.
[51]   Richt J A, Kasinathan P, Hamir A N, et al. Production of cattle lacking prion protein. Nature Biotechnology, 2007,25(1):132-138.
doi: 10.1038/nbt1271 pmid: 17195841
[52]   Burkard C, Opriessnig T, Mileham A J, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to PRRSV-1 infection. J Virol, 2018,92(16):e00415-00418.
doi: 10.1128/JVI.00415-18 pmid: 29925651
[53]   Xie Z, Pang D, Yuan H, et al. Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog, 2018,14(12):e1007193.
doi: 10.1371/journal.ppat.1007193 pmid: 30543715
[54]   Lu C, Pang D X, Li M J, et al. CRISPR/Cas9-mediated hitchhike expression of functional shRNAs at the porcine miR-17-92 cluster. Cell, 2019,8(2):113-129.
[55]   Xu A, Qin C, Lang Y, et al. A simple and rapid approach to manipulate pseudorabies virus genome by CRISPR/Cas9 system. Biotechnology Letters, 2015,37(6):1265-1272.
doi: 10.1007/s10529-015-1796-2 pmid: 25724716
[56]   Tang Y D, Liu J T, Wang T Y, et al. CRISPR/Cas9-mediated multiple single guide RNAs potently abrogate pseudorabies virus replication. Archives of Virology, 2017,162(12):1-6.
[57]   Gao Y, Wu H, Wang Y, et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 2017,18(1):13.
doi: 10.1186/s13059-016-1144-4 pmid: 28143571
[58]   Fu Y, Sander J D, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014,32(3):279-284.
pmid: 24463574
[59]   Müller M, Lee C M, Gasiunas G, et al. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Molecular Therapy, 2016,24:636-644.
doi: 10.1038/mt.2015.218 pmid: 26658966
[60]   Labuhn M, Adams F F, Ng M, et al. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR/Cas9 applications. Nucleic Acids Research, 2018,46(3):1375-1385.
doi: 10.1093/nar/gkx1268 pmid: 29267886
[61]   Kim D, Kim S, Kim S, et al. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Research, 2016,26(3):406-415.
doi: 10.1101/gr.199588.115 pmid: 26786045
[62]   Slaymaker I, Gao F, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science, 2016,351:84-88.
doi: 10.1126/science.aad5227 pmid: 26628643
[63]   Bolukbasi M F, Gupta A, Oikemus S, et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nature Methods, 2015,12:1150-1156.
doi: 10.1038/nmeth.3624 pmid: 26480473
[64]   Wyvekens N, Topkar V V, Khayter C, et al. Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Human Gene Therapy, 2015,26(7):425-431.
doi: 10.1089/hum.2015.084 pmid: 26068112
[65]   Kim S, Kim D, Cho S W, et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 2014,24(6):1012-1019.
doi: 10.1101/gr.171322.113 pmid: 24696461
[66]   Hsu P D, Scott D A, Weinstein J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013,31(9):827.
doi: 10.1038/nbt.2647 pmid: 23873081
[67]   Shin J, Jiang F, Liu J, et al. Disabling Cas9 by an anti-CRISPR DNA mimic. Science Adv, 2017,3(7):e1701620.
[68]   Wang J Z, Wu P, Shi Z M, et al. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Development, 2017,39:547-556.
doi: 10.1016/j.braindev.2017.03.024 pmid: 28390761
[69]   Timin A S, Muslimov A R, Lepik K V, et al. Efficient gene editing via non-viral delivery of CRISPR-Cas9 system using polymeric and hybrid microcarriers. Nanomedicine Nanotechnology Biology Medicine, 2018,14:97-108.
[70]   Liu C, Zhang L, Liu H, et al. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. Journal of Controlled Release, 2017,266(7):17-26.
[71]   Dewitt M A, Corn J E, Carroll D. Genome editing via delivery of Cas9 ribonucleoprotein. Methods, 2017, 121-122:9-15.
doi: 10.1016/j.ymeth.2017.04.003 pmid: 28410976
[72]   Ma Y, Chen W, Zhang X, et al. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein. RNA Biology, 2016,13:605-612.
doi: 10.1080/15476286.2016.1185591 pmid: 27163284
[73]   He X, Tan C, Feng W, et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Research, 2016,44:e85.
doi: 10.1093/nar/gkw064 pmid: 26850641
[74]   Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016,540(7631):144-149.
doi: 10.1038/nature20565 pmid: 27851729
[75]   Yang D, Scavuzzo M A, Chmielowiec J, et al. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Scientific Reports, 2016,6:21264.
doi: 10.1038/srep21264 pmid: 26887909
[76]   Hendel A, Bak R O, Clark J T, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nature Biotechnology, 2015,33(9):985-989.
doi: 10.1038/nbt.3290 pmid: 26121415
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[4] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[5] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[6] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[7] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[8] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[9] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[10] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[11] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[12] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[13] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[14] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[15] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.