Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (10): 1-11    DOI: 10.13523/j.cb.2106013
    
Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification
GUO Yang1,CHEN Yan-juan1,LIU Yi-chen1,WANG Hai-jie1,WANG Cheng-ji1,WANG Jue1,WAN Ying-han1,ZHOU Yu2,XI Jun2,SHEN Ru-ling1,*()
1 Shanghai Laboratory Animal Research Center, Shanghai 201203, China
2 Shanghai Model Organisms Center Inc., Shanghai 201318, China
Download: HTML   PDF(2622KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Programmed cell death protein (PD-1) is a T cell immune checkpoint and an important target for tumor therapy. This article used CRISPR/Cas9 technology to repair the introduced mutations by non-homologous recombination, causing the frame shift of the gene protein reading frame and the loss of PD-1 function. Estabilishment of Pd-1 gene knockout mouse model provides the basis for in-depth exploration of Pd-1 gene function and mechanism. Methods: We designed and synthesized 2 pairs of sgRNA fragments for exons 2-4 of the Pd-1 gene, and transcribed them in vitro together with the Cas9 fragments encoding them. The two mRNAs were mixed into C57BL/6 mouse fertilized eggs by microinjection. F0 generation mice were obtained by PCR product sequencing and then mated with wild-type C57BL/6 mice to obtain F1 generation heterozygous mice. F1 generation mice were intercoursed to obtain F2 generation homozygous mouse strains (Pd-1-/-). After it was stimulated with concanavalin (ConA), PD-1 in Pd-1-/- mice was detected by Real-Time fluorescent quantitative PCR and flow cytometry at the mRNA and protein levels, respectively. The expression levels of IL-6, IFN-γ, IL12/IL23 and TNF-α in the serum of Pd-1-/- mice were detected by the ELISA method, and the mechanism of Pd-1 pathway in the regulation of T cell response and its countermeasures were preliminarily analyzed. Results: PCR and sequencing results showed that exons 2-4 of the Pd-1 gene in the mouse genome were successfully knocked out; Real-Time PCR experiments and flow cytometry results showed that the expression of PD-1 was significantly reduced in Pd-1-/- spleen, mesenteric lymph nodes, thymus and blood tissues compared with wild-type mice; the double-antibody sandwich ELISA test results showed that the expression of serum IL-6 and IFN-γ is up-regulated stimulated by ConA after Pd-1 gene was knocked out. Conclusion: The Pd-1 gene knockout mouse model has been successfully constructed. Preliminary analysis shows that Pd-1 deletion can upregulate the response of IL-6 and IFN-γ to ConA stimulation, increase the inflammatory response caused by ConA, and provide a new mouse model for the study of Pd-1 in vivo gene function and research ideas.



Key wordsPD-1      PD-L1      CRISPR/Cas9      IL-6      IFN-γ     
Received: 08 June 2021      Published: 08 November 2021
ZTFLH:  Q819  
Corresponding Authors: Ru-ling SHEN     E-mail: shenruling@slarc.org.cn
Cite this article:

GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification. China Biotechnology, 2021, 41(10): 1-11.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2106013     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I10/1

sgRNA靶序列 序列信息(5'-3')
sgRNA 1 GTAAGCAGTTCCCCCTACCT AGG
sgRNA 2 GCATAACTGAACCTAGGGTC TGG
sgRNA 3 GGAACAACAGGATATGGCTC TGG
sgRNA 4 GAACAACAGGATATGGCTCT GGG
Table 1 sgRNA sequence information
序列 序列信息(5'-3')
sgRNA1正义链 CACCGGACATCTTATTCCACATATC
sgRNA1反义链 AAACGATATGTGGAATAAGATGTCC
sgRNA2正义链 CACCGCATACTCCTAATTATTAAGC
sgRNA2反义链 AAACGCTTAATAATTAGGAGTATGC
Table 2 Oligonucleotide chain sequence information
引物 序列信息(5'-3')
P1 CAGGCCTGGAACATCTTGA
P2 TGGCCCAGTTTCTATCGTTA
Table 3 Primer sequence information
Gene 上游序列信息(5'-3') 下游序列信息(5'-3')
Pd-1 ATGGCACTGTTCTTCTCCTG AGCTCAGATCTATGTTCTTGGTTG
β-actin CCTGTATGCCTCTGGTCGTA CCATCTCCTGCTCGAAGTCT
Table 4 RT-PCR primer sequences
Fig.1 Construction strategy of Pd-1 knockout mice
Fig.2 Genotype results of Pd-1 gene knockout (a) Genotyping strategy of F0/1 Pd-1 knockout mouse (b) Pd-1-/- mouse genotype identification electrophoresis results:wild type mouse PCR product has only a band of 2 032bp, Pd-1-/+ mice with two bands of 2 032bp and 341bp, respectively, and Pd-1-/- mice with single 341bp band.WT-wild type; HE- Pd-1-/+; HO- Pd-1-/-;M-GeneRuler 1 kb DNA
类型 序列信息(5'-3') 突变情况
Pd-1-/- aggtagagacatcttcggggaaaatatcccaaagtctcaaaggacagaatagtagcctccagaccctaggttcagttatgctgaaggaagagccctgcttgttggaggttac
ttattcacaacctacaagaagctacaagctcctag…(-1 691bp)…gccatatcctgttgttcctcccagcagctgaccccactgtgtgtacccctgtcgtgtccaac
gtggtcacgacttgttttcttc
-1 691bp
WT aggtagagacatcttcggggaaaatatcccaaagtctcaaaggacagaatagtagcctccagaccctaggttcagttatgctgaaggaagagccctgcttgttggaggttac
ttattcacaacctacaagaagctacaagctcctaggtagggggaactgcttacgatattctgccctggaatgggtctgagagcacattcctctccagggggttcagaaaagat
gtcagaaagggtgta……ccaggccacccccaggtcttggtacaggtagagagaccatggggcctacagggctagagcctggagagcccagctcccattttctaccag
gcccccagagccatatcctgttgttcctcccagcagctgaccccactgtgtgtacccctgtcgtgtccaacgtggtcacgacttgttttcttc
野生型
Table 5 The sequence information of Pd-1-/- and WT mice
Fig.3 PD-1 expression using real-time PCR Statistics of PD-1 mRNA expression in the spleen, mesenteric lymph node, thymus and bone marrow of Pd-1-/- mice (**** P< 0.000 1)
Fig.4 PD-1 expressed in CD4+ T and CD8+ T cells using FACS before and after ConA stimulation (a) PD-1 expression in spleen (b) PD-1 expression in mesenteric lymph node (c) PD-1 expression in thymus (d) PD-1 expression in blood; WT-wild-type mice, Pd-1-/--Pd-1-/- mice, WT by ConA-wild type mice after stimulation, Pd-1-/- by ConA -Pd-1-/- mice after stimulation, * P<0.05, ** P<0.01, **** P<0.000 1
Fig.5 Schematic diagram of scatter points of PD-1 expression in FACS detection before ConA stimulation (a) PD-1 expression in CD4+ or CD8+ T cells in spleen (b) PD-1 expression in CD4+ or CD8+ T cells in mesenteric lymph node (c) PD-1 expression in CD4+ or CD8+ T cells in thymus (d) PD-1 expression in CD4+ or CD8+ T cells in blood; 3 mice per group;WT-wild type mice, Pd-1-/--Pd-1-/- mice; FITC labeled fluorescent antibody anti-mouse CD4, PE labeled fluorescent antibody anti-mouse CD8, APC labeled fluorescent antibody anti-mouse CD279 detection
Fig.6 Schematic diagram of scatter points of PD-1 expression in FACS detection after ConA stimulation (a) PD-1 expression in CD4+ or CD8+ T cells in spleen (b) PD-1 expression in CD4+ or CD8+ T cells in mesenteric lymph node (c) PD-1 expression in CD4+ or CD8+ T cells in thymus (d) PD-1 expression in CD4+ or CD8+ T cells in blood; 3 mice per group; WT-wild type mice, Pd-1-/--Pd-1-/- mice; FITC labeled fluorescent antibody anti-mouse CD4, PE labeled fluorescent antibody anti-mouse CD8, APC labeled fluorescent antibody anti-mouse CD279 detection
Fig.7 IL-6, IFN-γ, IL12/IL23 and TNF-α level in serum of Pd-1-/- mice before and after ConA stimulation (a) IL-6 level in serum before and after ConA stimulation (b) IFN-γ level in serum before and after ConA stimulation (c) IL12/IL23 level in serum before and after ConA stimulation (d) TNF-α level in serum before and after ConA stimulation; 5 mice per group: WT-wild type mice, Pd-1-/--Pd-1-/-mice, ConA-after ConA stimulation, ND-value is not detected, * P<0.05,**** P<0.000 1
[1]   Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC. Journal of Immunology, 2002, 169(10): 5538-5545.
doi: 10.4049/jimmunol.169.10.5538
[2]   Nishimura H, Agata Y, Kawasaki A, et al. Developmentally regulated expression of the PD-1 protein on the surface of double-negative(CD4-CD8-) thymocytes. International Immunology, 1996, 8(5): 773-780.
pmid: 8671666
[3]   Nishimura H, Honjo T, Minato N. Facilitation of β selection and modification of positive selection in the Thymus of Pd-1-deficient mice. Journal of Experimental Medicine, 2000, 191(5): 891-898.
doi: 10.1084/jem.191.5.891
[4]   Zhang X W, Schwartz J C D, Guo X L, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity, 2004, 20(3): 337-347.
doi: 10.1016/S1074-7613(04)00051-2
[5]   Ahmadzadeh M, Johnson L A, Heemskerk B, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 2009, 114(8): 1537-1544.
doi: 10.1182/blood-2008-12-195792 pmid: 19423728
[6]   Latchman Y, Wood C R, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunology, 2001, 2(3): 261-268.
pmid: 11224527
[7]   Keir M E, Butte M J, Freeman G J, et al. PD-1 and its ligands in tolerance and immunity. Annual Review of Immunology, 2008, 26: 677-704.
doi: 10.1146/immunol.2008.26.issue-1
[8]   Cho H Y, Choi E K, Lee S W, et al. Programmed death-1 receptor negatively regulates LPS-mediated IL-12 production and differentiation of murine macrophage RAW264.7 cells. Immunology Letters, 2009, 127(1): 39-47.
doi: 10.1016/j.imlet.2009.08.011
[9]   Said E A, Dupuy F P, Trautmann L, et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nature Medicine, 2010, 16(4): 452-459.
doi: 10.1038/nm.2106
[10]   Xiao G, Deng A Q, Liu H F, et al. Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. PNAS, 2012, 109(38): 15419-15424.
doi: 10.1073/pnas.1206370109
[11]   Salmaninejad A, Khoramshahi V, Azani A, et al. PD-1 and cancer: molecular mechanisms and polymorphisms. Immunogenetics, 2018, 70(2): 73-86.
doi: 10.1007/s00251-017-1015-5 pmid: 28642997
[12]   Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nature Medicine, 2003, 9(12): 1477-1483.
pmid: 14595408
[13]   Wang J, Okazaki I M, Yoshida T, et al. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. International Immunology, 2010, 22(6): 443-452.
doi: 10.1093/intimm/dxq026
[14]   Kasprowicz V, Schulze zur Wiesch J, Kuntzen T, et al. High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. Journal of Virology, 2008, 82(6): 3154-3160.
pmid: 18160439
[15]   Nakamoto N, Kaplan D E, Coleclough J, et al. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology, 2008, 134(7): 1927-37, 1937.e1-2.
doi: 10.1053/j.gastro.2008.02.033
[16]   Borkner L, Kaiser A, Kasteele W, et al. RNA interference targeting programmed death receptor-1 improves immune functions of tumor-specific T cells. Cancer Immunology, Immunotherapy, 2010, 59(8): 1173-1183.
doi: 10.1007/s00262-010-0842-0
[17]   Hino R, Kabashima K, Kato Y, et al. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer, 2010, 116(7): 1757-1766.
doi: 10.1002/cncr.v116:7
[18]   Iwai Y, Hamanishi J, Chamoto K, et al. Cancer immunotherapies targeting the PD-1 signaling pathway. Journal of Biomedical Science, 2017, 24(1): 26.
doi: 10.1186/s12929-017-0329-9
[19]   万颖寒, 慈磊, 王珏, 等. 淋巴细胞活化基因-3敲除(Lag-3-/-)小鼠构建及初步表型分析. 中国实验动物学报, 2020, 28(1): 49-57.
[19]   Wan Y H, Ci L, Wang J, et al. Construction and preliminary phenotypic analysis of Lag-3-/- mice. Acta Laboratorium Animalis Scientia Sinica, 2020, 28(1): 49-57.
[20]   Hoejberg L, Bastholt L, Schmidt H. Interleukin-6 and melanoma. Melanoma Research, 2012, 22(5): 327-333.
doi: 10.1097/CMR.0b013e3283543d72 pmid: 22713796
[21]   Wang F, Xu J, Zhu Q, et al. Downregulation of IFNG in CD4(+) T cells in lung cancer through hypermethylation: a possible mechanism of tumor-induced immunosuppression. PLoS One, 2013, 8(11): e79064.
doi: 10.1371/journal.pone.0079064
[22]   Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspectives in Biology, 2014, 6(10): a016295.
doi: 10.1101/cshperspect.a016295
[23]   Rossi J F, Lu Z Y, Jourdan M, et al. Interleukin-6 as a therapeutic target. Clinical Cancer Research, 2015, 21(6): 1248-1257.
doi: 10.1158/1078-0432.CCR-14-2291
[24]   Tsukamoto H, Fujieda K, Hirayama M, et al. Soluble IL6R expressed by myeloid cells reduces tumor-specific Th1 differentiation and drives tumor progression. Cancer Research, 2017, 77(9): 2279-2291.
doi: 10.1158/0008-5472.CAN-16-2446 pmid: 28235765
[25]   Rotz S J, Leino D, Szabo S, et al. Severe cytokine release syndrome in a patient receiving PD-1-directed therapy. Pediatric Blood & Cancer, 2017, 64(12): e26642.
doi: 10.1002/pbc.26642
[26]   Grupp S A, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine, 2013, 368(16): 1509-1518.
doi: 10.1056/NEJMoa1215134
[27]   Tanaka R, Okiyama N, Okune M, et al. Serum level of interleukin-6 is increased in nivolumab-associated psoriasiform dermatitis and tumor necrosis factor-α is a biomarker of nivolumab recativity. Journal of Dermatological Science, 2017, 86(1): 71-73.
doi: S0923-1811(16)31098-2 pmid: 28069323
[28]   Leplina O, Smetanenko E, Tikhonova M, et al. Binding of the placental growth factor to VEGF receptor type 1 modulates human T cell functions. Journal of Leukocyte Biology, 2020, 108(3): 1013-1024.
doi: 10.1002/jlb.v108.3
[29]   Lee S J, Jang B C, Lee S W, et al. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-γ-induced upregulation of B7-H1 (CD274). FEBS Letters, 2006, 580(3): 755-762.
doi: 10.1016/j.febslet.2005.12.093
[30]   Oestreich K J, Yoon H, Ahmed R, et al. NFATc1 regulates PD-1 expression upon T cell activation. Journal of Immunology, 2008, 181(7): 4832-4839.
pmid: 18802087
[31]   Melssen M, Slingluff C L Jr. Vaccines targeting helper T cells for cancer immunotherapy. Current Opinion in Immunology, 2017, 47: 85-92.
doi: S0952-7915(17)30050-X pmid: 28755541
[32]   Spitzer M H, Carmi Y, Reticker-Flynn N E, et al. Systemic immunity is required for effective cancer immunotherapy. Cell, 2017, 168(3): 487-502.e15.
doi: 10.1016/j.cell.2016.12.022
[33]   Li J, Jie H B, Lei Y, et al. PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Research, 2015, 75(3): 508-518.
doi: 10.1158/0008-5472.CAN-14-1215
[34]   McAlees J W, Lajoie S, Dienger K, et al. Differential control of CD4(+) T-cell subsets by the PD-1/PD-L1 axis in a mouse model of allergic asthma. European Journal of Immunology, 2015, 45(4): 1019-1029.
doi: 10.1002/eji.201444778 pmid: 25630305
[35]   Karachaliou N, Gonzalez-Cao M, Crespo G, et al. Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients. Therapeutic Advances in Medical Oncology, 2018, 10: 1758834017749748.
[36]   Kochupurakkal B S, Wang Z C, Hua T, et al. RelA-induced interferon response negatively regulates proliferation. PLoS One, 2015, 10(10): e0140243.
doi: 10.1371/journal.pone.0140243
[37]   Gordon S R, Maute R L, Dulken B W, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 2017, 545(7655): 495-499.
doi: 10.1038/nature22396
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[3] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[4] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[5] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[6] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[7] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[8] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[9] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[10] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[11] LIN Jian-hua,HAN Jun,Xu Han-mei. Developing the Stability of PD-1 / PD-L1 Immune Checkpoint Antibody Drug Formulation[J]. China Biotechnology, 2020, 40(10): 35-42.
[12] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[13] Lu CHEN,Mao HUANG,Qi PENG,Jia-li ZHAO,Jia-qing XIE,Lu LIN,Li-jun HU,Yi-yun HUANG,Qin HU,Lan ZHOU. S100A6 Promotes Cell Proliferation of Colorectal Cancer via Upregulating IL-6 Expression of Macrophages[J]. China Biotechnology, 2019, 39(4): 1-7.
[14] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[15] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.