Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (6): 12-19    DOI: 10.13523/j.cb.2202035
    
Discovery of Stable Expression Sites in CHO Genome NW-003614092.1
QU Li-li1,DING Xue-feng2,CAI Yan-fei1,LU Chen1,LI Hua-zhong2,JIN Jian1,CHEN Yun1,**()
1. School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
2. School of Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(3698KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The purpose is to provide a stable expression site with clear information for constructing a Chinese hamster ovary cell (CHO) line stably expressing recombinant protein by site-specific integration and shortening the research and development timeline. Methods: The CHO-K1-1d2 cell line with potential stable expression site randomly integrated with Zsgreen1 gene by lentivirus was continuously subcultured to verify the stability of expression; the integration site of lentiviral vector was analyzed by chromosome walking, and the editability of the site was verified by CRISPR/Cas9 technology. Results: 100% of CHO-K1-1d2 cells could emit green fluorescence and the fluorescence intensity was stable in the process of continuous adherent culture for 20 generations and suspension culture for 50 generations, indicating that Zsgreen1 protein could be stably expressed. The sequence results in chromosome walking analysis showed that the antiviral vectors were integrated between bases 1 159 463 and 1 159 467 of the CHO cell genome NW-003614092.1. The sequence results after co-transfection of sgRNA and Cas9 plasmid in CHO-K1 cells showed that this site can be edited by CRISPR/Cas9 technology. Conclusion: There is a stable expression site in CHO cell genome NW-003614092.1, which has clear information and can be edited by CRISPR/Cas9 technology.



Key wordsCHO      Stable sites      Genome walking      CRISPR/Cas9     
Received: 21 February 2022      Published: 07 July 2022
ZTFLH:  Q813  
Corresponding Authors: Yun CHEN     E-mail: chenyun72@126.com
Cite this article:

QU Li-li,DING Xue-feng,CAI Yan-fei,LU Chen,LI Hua-zhong,JIN Jian,CHEN Yun. Discovery of Stable Expression Sites in CHO Genome NW-003614092.1. China Biotechnology, 2022, 42(6): 12-19.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2202035     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I6/12

Primer Primer sequence (5'→3')
AP1 GTAATACGCTCACTATAGGGC
LSP1 GCTTCAGCAAGCCGAGTCCTGCGTCGAG
AP2 ACTATAGGGCACGCGTGGT
LSP2 GCTCCTCTGGTTTCCCTTTCGCTTTCAA
Table 1 Primer sequences for genome walking
Primer Primer sequence(5' →3')
SP1 GGCAGAGAAAGATAGGCTGGAAAC
ZsP1 CCAGTTGTCGGTCATCTTCTTCATC
SP2 CATTACTCCTACTAGCCACCACATG
ZsP2 CATGTACCACGAGTCCAAGTTCTAC
Table 2 Primer sequences for site verification
Fig.1 Schematic diagram of integration site verification
Fig.2 Expression of Zsgreen1 protein in CHO-K1-1d2 cells cultured in adherent for 20 passages(a) Growth curve of CHO cells (b) Inverted fluorescence microscope to observe the expression of Zsgreen1 protein (c) ImageJ software analysis results (d), (e) Quantitative detection of Zsgreen1 protein expression by flow cytometry
Fig.3 Expression of Zsgreen1 protein in CHO-K1-1d2 cells cultured in suspension for 50 passages(a) Inverted fluorescence microscope to observe the expression of Zsgreen1 protein (b) ImageJ software analysis results (c), (d) Quantitative detection of Zsgreen1 protein expression by flow cytometry
Fig.4 Results of agarose gel electrophoresis of secondary PCR productsM: DL15 000 DNA marker; Lane 1: Dra I digestion library; Lane 2: Ssp I digestion library; Lane 3: Hpa I digestion library
Sequence (5' →3')
TAAAATTTTATTCTTTCTCTAAAGTTTCATAAATATGTTTTGATAATGTTTAGGTCCCTCTCCAAACTCTTCCTGATAAGGGTTCCAGGTATGGCT
TCATCTATGGAGTAGGAGTCATATTCAATCAGAAAGTGTCTGTGTTCTTCCATGGGGTTCTGGAAGGGCTAATTCACTCCCAACGAAGACAAGA
TATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGGTCAGATATCCACTGACCTTT
GGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTTACACCCTGTGAGCCTG
CATGGGATGGATGACCCGGAGAGAGAAGTGTTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAG
TACTTCAAGAACTGCTGATATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCC
Table 3 Sequencing results of secondary PCR products
Fig.5 The results of agarose gel electrophoresis of PCR products for verification of integration sitesM: DL5 000 DNA marker; Lane 1: PCR product with SP1 and ZsP1 primers; Lane 2: PCR product with SP2 and ZsP2 primers
Sequencing primer Sequence (5' →3')
SP1 TGTTTTGATAATGTTTAGGTCCCTCTCCAAACTCTTCCTGATAAGGGTTCCAGGTATGGCTTCATCTATGGAGTAGGAG
TCATATTCAATCAGAAAGTGTCTGTGTTCTTCCATGGGGTTCTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATA
TCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAAC
SP2 CTTTCATAGTTCTTAGCATGCTTCCAGAGGGGAAAATGATCACAAGTCATACCCAGCATGGAATCCCATGACCTACAA
AGACTGGGCTGGAAAGACATGCTCCCAAGTCTAATACTTGTATGAACCTGCTAGAGATTTTCCACACTGACTAAAAGG
GTCTGAGGGATCTCTAGTTACCAGAGTCACACAACAGACGGGCACACACTACTT
Table 4 Site verification sequencing results
Fig.6 Verification of site editability(a) Peak map of sgRNA expression plasmid sequencing (b) Cell pool sequencing peak map of genomic PCR products (c) Result of T7E1 enzyme digestion. M: DL5 000 marker; Lane 1: PCR product of cell pool genome; Lane 2: PCR product of cell pool digested by T7E1 enzyme
[1]   Matasci M, Hacker D L, Baldi L, et al. Recombinant therapeutic protein production in cultivated mammalian cells: current status and future prospects. Drug Discovery Today: Technologies, 2008, 5(2-3): e37-e42.
[2]   Sergeeva D, Camacho-Zaragoza J M, Lee J S, et al. CRISPR/Cas9 as a genome editing tool for targeted gene integration in CHO cells. Methods in Molecular Biology (Clifton, N J), 2019, 1961: 213-232.
[3]   Kim J Y, Kim Y G, Lee G M. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Applied Microbiology and Biotechnology, 2012, 93(3): 917-930.
doi: 10.1007/s00253-011-3758-5
[4]   Wurm M J, Wurm F M. Naming CHO cells for bio-manufacturing: genome plasticity and variant phenotypes of cell populations in bioreactors question the relevance of old names. Biotechnology Journal, 2021, 16(7): 2100165.
doi: 10.1002/biot.202100165
[5]   Lee J S, Kallehauge T B, Pedersen L E, et al. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Scientific Reports, 2015, 5: 8572.
doi: 10.1038/srep08572
[6]   Wurm F. CHO quasi species-implications for manufacturing processes. Processes, 2013, 1(3): 296-311.
doi: 10.3390/pr1030296
[7]   Fan Y J, Jiang W, Ran F L, et al. An efficient exogenous gene insertion site in CHO cells with high transcription level to enhance AID-induced mutation. Biotechnology Journal, 2020, 15(5): e1900313.
[8]   Hamaker N K, Lee K H. A site-specific integration reporter system that enables rapid evaluation of CRISPR/Cas9-mediated genome editing strategies in CHO cells. Biotechnology Journal, 2020, 15(8): e2000057.
[9]   胡湾湾, 丁学峰, 蔡燕飞, 等. 外源蛋白在CHO细胞染色体上一个新位点的定点整合和稳定表达. 中国药科大学学报, 2021, 52(4): 487-495.
[9]   Hu W W, Ding X F, Cai Y F, et al. Site-specific integration and stable expression of exogenous protein at a novel site on CHO cell chromosome. Journal of China Pharmaceutical University, 2021, 52(4): 487-495.
[10]   Zhou S T, Ding X F, Yang L, et al. Discovery of a stable expression hot spot in the genome of Chinese hamster ovary cells using lentivirus-based random integration. Biotechnology & Biotechnological Equipment, 2019, 33(1): 605-612.
[11]   周松涛. CHO细胞定点整合稳定表达治疗性蛋白质的研究. 无锡: 江南大学, 2019.
[11]   Zhou S T. Study of site-specific integration of therapeutic protein genes into CHO genome and stable expression. Wuxi: Jiangnan University, 2019.
[12]   杨蕾. 在CHO-K1细胞基因组内定点整合表达人血清白蛋白的研究.无锡: 江南大学, 2020.
[12]   Yang L. cStudy on site-specific integration and expression of human serum albumin in CHO-K1 ell genome. Wuxi: Jiangnan University, 2020.
[13]   周松涛, 陈蕴, 龚笑海, 等. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系. 中国生物工程杂志, 2019, 39(4): 52-59.
[13]   Zhou S T, Chen Y, Gong X H, et al. Using CRISPR/Cas9 technology to construct human serum albumin CHO stable expression cell line. China Biotechnology, 2019, 39(4): 52-59.
[14]   Stemmer M, Thumberger T, del Sol Keyer M, et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas 9 target prediction tool. PLoS One, 2015, 10(4): e0124633.
doi: 10.1371/journal.pone.0124633
[15]   杨蕾, 丁学峰, 蔡燕飞, 等. CHO细胞Kcmf1基因内定点整合ZsGreen1报告基因的表达稳定性研究. 食品与生物技术学报, 2021, 40(4): 58-66.
[15]   Yang L, Ding X F, Cai Y F, et al. Expression stability of ZsGreen1 reporter gene in Kcmf1 gene of CHO cells. Journal of Food Science and Biotechnology, 2021, 40(4): 58-66.
[16]   Zhao M L, Wang J X, Luo M Y, et al. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Applied Microbiology and Biotechnology, 2018, 102(14): 6105-6117.
doi: 10.1007/s00253-018-9021-6
[17]   Kawabe Y, Komatsu S, Komatsu S, et al. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems. Journal of Bioscience and Bioengineering, 2018, 125(5): 599-605.
doi: 10.1016/j.jbiosc.2017.12.003
[18]   Chi X L, Zheng Q, Jiang R H, et al. A system for site-specific integration of transgenes in mammalian cells. PLoS One, 2019, 14(7): e0219842.
doi: 10.1371/journal.pone.0219842
[19]   Carver J, Ng D, Zhou M, et al. Maximizing antibody production in a targeted integration host by optimization of subunit gene dosage and position. Biotechnology Progress, 2020, 36(4): e2967.
[20]   Inniss M C, Bandara K, Jusiak B, et al. A novel Bxb 1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO Cells. Biotechnology and Bioengineering, 2017, 114(8): 1837-1846.
doi: 10.1002/bit.26268 pmid: 28186334
[1] REN Zi-qiang,WANG Meng-can,ZHANG Hai-ling,ZHU Xi-qiang,LIN Jian. Research Progress of Glycoprotein Expression in CHO Cells[J]. China Biotechnology, 2022, 42(6): 54-65.
[2] LIU Ming-zhu,ZHANG Liang,GUO Fang,LI Chun,FENG Xu-dong. Construction of Yeast Surface Display System and Application in Cellulose Degrading[J]. China Biotechnology, 2022, 42(5): 91-99.
[3] ZHANG Yi, WANG Chen, SHI Jing-jing, CHEN Xue-jun, ZHANG Rui-hua, JIN Qian, SHI Tong, LI Li-qin. Establishment of Human GABAAR-CHO Cell Line Stable Expression[J]. China Biotechnology, 2022, 42(3): 38-46.
[4] LIN Jian-fen, LUO Shun. Research Progress on Stable Hot Spot Sites in the Genome of CHO Cells[J]. China Biotechnology, 2022, 42(3): 72-81.
[5] ZHAO Yuan-heng,GUO Jia,CHEN Liu-biao,WANG Jun-jie. A Review on Bio-preservation at Sub-freezing Temperatures under Isochoric Conditions[J]. China Biotechnology, 2022, 42(1/2): 119-127.
[6] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[7] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[8] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[9] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[10] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[11] Chen-yang ZHANG,Chang-chun HEI,Shi-lin YUAN,Yu-jia ZHOU,Mei-ling CAO,Yi-xin QIN,Xiao YANG. SIRT3 Inhibits Mitophagy and Alleviates Neuronal Oxygen Deprivation/Reoxygenation Injury Aggravated by High Glucose[J]. China Biotechnology, 2021, 41(11): 1-13.
[12] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[13] XU Xiao, CHENG Chi, YUAN Kai, XUE Chuang. Research Progress of Cellulase Production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1): 52-61.
[14] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[15] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.