Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (12): 58-66    DOI: 10.13523/j.cb.2007051
    
Progress of CRISPR/Cas Base Editing System
WANG Yue,MU Yan-shuang(),LIU Zhong-hua
Heilongjiang Key Laboratory of Animal Cell and Genetic Engineering, Northeast Agricultural University, Harbin 150030, China
Download: HTML   PDF(30451KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Base editing is a precise genome editing technique based on the CRISPR/Cas system. Base editing use cytosine deaminases or adenine deaminases to perform base editing, and achieve base substitutions, respectively. Base editor, engineered by fusing the Cas9 nikase (Cas9n) with a cytidine deaminase enzyme is guided by a sgRNA to the target site. The position is the single base 4-7 of the target distance from the end of the sgRNA site motif (protospacer adjacent motif, PAM) sequence for editing.Without cutting doublestrand DNAs, base editor can precisely mediate the direct conversion of cytidine to thymineor or guanine to adenine. Therefore the base editing history, composition, working principle, and technology developments were briefly described.



Key wordsCRISPR/Cas9      Gene editing      Single base editing      Cytosine Deaminase      Adenosine deaminase     
Received: 30 July 2020      Published: 14 January 2021
ZTFLH:  Q789  
Corresponding Authors: Yan-shuang MU     E-mail: muyanshuang@neau.edu.cn
Cite this article:

WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System. China Biotechnology, 2020, 40(12): 58-66.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2007051     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I12/58

Fig.1 Schematic diagram of the function in CBE system (a) Deaminase-mediated base editing reactions (b) The schematic structure of cytosine (CBE, take BE3 as an example) base editors (c) Cytosine base editing strategy L: Peptide linker
Fig.2 Schematic diagram of the function in ABE system (a)Deaminase-mediated base editing reactions (b)The schematic structure of adenine (ABE) base editors (c) Adenine base editing strategy L: Peptide linker
Fig.3 Schematic diagram of the function in Dual base editing system
Fig. 4 Schematic of multiplexed C to U and A to I editing with pre-crRNA guide arrays
Fig.5 Summary of BE editing system version
Fig.6 The working principle diagram of CRISPR-X
Fig.7 The working principle diagram of dCpf1-Bes
Fig.8 The structure diagram of eBE-S3
Fig.9 The working principle diagram of YE1-BE3-FNLS
Fig.10 Schematic diagram of the function in hyCBE system===(a) The working principle diagram of hyCBE (b) The schematic diagram of the optimization of hyCBE system
ABE version Deaminase Point mutation Base editing rate (%)
ABE1.2 TadA* D108N、A106V 3.2
ABE2.1 TadA* D147Y、E155V 11
ABE2.9 TadA* D147Y、E155V 20
ABE2.10 TadA(2.1)* D147Y、E155V 24
ABE3.1 TadA*-TadA* L84F、H123Y、I157F 29
ABE5.1 wtTadA-TadA* H36L、R51L、S146C、K157N 17
ABE5.3 wtTadA-TadA* H36L、R51L、S146C、K157N 33
ABE6.3 wtTadA-TadA* Removal of adverse point mutations 47
ABE7.10 wtTadA-TadA* Removal of adverse point mutations 50
Table 1 Table of the optimization of ABE system
Fig.11 Schematic diagram of the optimization of ABE system Yellow stars indicate 10 mutation sites; red stars indicate 1 mutation site
[1]   Jansen R, Gaastra1 W, Embden V, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002,43(6):1565-1575.
pmid: 11952905
[2]   Jinek M, Chylinski K, Fonfara I, et al. A Programmable dual-RNA-guided DNA endo nuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
pmid: 22745249
[3]   Cong L, Ran A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
pmid: 23287718
[4]   Ran F A, Wright J, Zhang F, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013,8(11):2281-2308.
pmid: 24157548
[5]   Komor A C, Zuris J A, Liu D R, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016,533(7603):420-424.
pmid: 27096365
[6]   Gaudelli N M, Komor A C, Rees H A, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature, 2017,551(7681):464-471.
pmid: 29160308
[7]   Grunewald J, Zhou R H, Lareau G A, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Bio, 2020,38(7):861-864.
[8]   Zhang X H, Zhu B Y, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Bio, 2020,38(7):856-860.
[9]   Abudayyeh O O, Gootenberg J S, Franklin B, et al. A cytosine deaminase for programmable single-base RNA editing. Science, 2019,365(6451):382-386.
pmid: 31296651
[10]   Jin S, Zong Y, Gao Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 2019,364(6437):292-295.
doi: 10.1126/science.aaw7166 pmid: 30819931
[11]   Zuo E, Sun Y D, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019,364(6437):289-292.
pmid: 30819928
[12]   Tarantino M E, Dow B J, Drohat A C, et al. Nucleosomes and the three glycosylases: high, medium, and low levels of excision by the uracil DNA glycosylase superfamily. DNA Repair, 2018,72(6):56-63.
[13]   Mali P, Yang L H, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.
[14]   Kunkel T A, Erie D A. Eukaryotic mismatch repair in relation to DNA replication. Annu Rev Genet, 2015,49(5):291-313.
[15]   Komor A C, Zhao K T, Packer M S, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv, 2017, 3(8): eaao4774.
pmid: 28845449
[16]   Carter R J, Parsons J L. Base excision repair: a pathway regulated by post-translational modifications. Mol Cell Biol, 2016,36(10):1426-1437.
doi: 10.1128/MCB.00030-16 pmid: 26976642
[17]   Jiang W, Feng S J, Huang S S, et al. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity. Cell Res, 2018,28(8):855-861.
pmid: 29875396
[18]   Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353(6305): aaf8729.
pmid: 27634516
[19]   Ma Y, Zhang J Y, Yin W J, et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods, 2016,13(12):1029-1035.
pmid: 27723754
[20]   Hess G T, Fresard L, Han K, et al. Directed evolution using dcas9-targeted somatic hypermutation in mammalian cells. Nature Methods, 2016,13(12):1036-1042.
doi: 10.1038/nmeth.4038 pmid: 27798611
[21]   Kim Y B, Komor A C, Levy J M, et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol, 2017,35(4):371-376.
pmid: 28191901
[22]   Li X, Wang Y, Liu Y J, et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol, 2018,36(4):324-327.
doi: 10.1038/nbt.4102 pmid: 29553573
[23]   Wang L, Wang Y, Liu Y J, et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res, 2017,27(10):1289-1292.
doi: 10.1038/cr.2017.111 pmid: 28849781
[24]   Zuo E, Sun Y D, Yuan T L, et al. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat Methods, 2020,17(6):1-5.
[25]   Zhang X H, Chen L, Zhu B Y, et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nat Cell Biol, 2020,22(6):1-11.
[26]   Hu J H, Miller S M, Geurts M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018,556(7699):57-63.
doi: 10.1038/nature26155 pmid: 29512652
[27]   Hua K, Tao X, Zhu J K. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J, 2019,17(2):499-504.
doi: 10.1111/pbi.12993 pmid: 30051586
[28]   Yang L, Zhang X H, Wang L R, et al. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell, 2018,9(9):814-819.
pmid: 30066232
[29]   Hua K, Tao X P, Yuan F T, et al. Precise A.T to G.C Base Editing in the Rice Genome. Mol Plant, 2018,11(4):627-630.
doi: 10.1016/j.molp.2018.02.007 pmid: 29476916
[30]   Koblan L W, Doman J L, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol, 2018,36(9):843-846.
doi: 10.1038/nbt.4172 pmid: 29813047
[31]   Daub H, Specht K, Ullrich A. Strategies to overcome resistance to targeted protein kinase inhibitors. Nat Rev Drug Discov, 2004,3(12):1001-1010.
doi: 10.1038/nrd1579 pmid: 15573099
[32]   Yeh W H, Oleinik S O, Levy J M, et al. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Med, 2020, 12(546): eaay9101.
doi: 10.1126/scitranslmed.abd0088 pmid: 32493789
[33]   Tang X, Sretenovic S, Ren Q R, et al. Plant prime editors enable precise gene editing in rice cells. Mol Plant, 2020,13(5):667-670.
doi: 10.1016/j.molp.2020.03.010 pmid: 32222487
[34]   Zong Y, Wang Y P, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol, 2017,35(5):438-440.
pmid: 28244994
[35]   Kim K, Ryu S M, Kim S T, et al. Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol, 2017,35(5):435-437.
pmid: 28244995
[36]   Liang P, Sun W, Sun Y, et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein & Cell, 2017.
doi: 10.1007/s13238-020-00764-0 pmid: 33141416
[37]   Xie J K, Li N, Liu Q S, et al. Efficient base editing for multiple genes and loci in pigs using base editors. Nature Communications, 2019,10(1):2852-2865.
pmid: 31253764
[38]   Yang J, Li J Y, Suzuki K C, et al. Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding. Cell Res, 2017,27(9):1178-1181.
doi: 10.1038/cr.2017.86 pmid: 28685772
[39]   Wang L R, Li L X, Ma Y, et al. Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies. Cell Research, 2020,30(3):276-278.
doi: 10.1038/s41422-019-0267-z pmid: 31911671
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[4] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[5] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[6] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[7] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[8] ZHOU Qin,WANG Shuang,ZHANG Ting,LI Shan-gang,CHEN Yong-chang. T158M Single Base Editing of MECP2 Gene in Murine and Rhesus Monekey’s Embryos[J]. China Biotechnology, 2020, 40(6): 31-39.
[9] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[10] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[11] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[12] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[13] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[14] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[15] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.