Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (6): 27-37    DOI: 10.13523/j.cb.2101011
    
Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System
BI Bo,ZHANG Yu,ZHAO Hui()
South China Agricultural University, Guangzhou 510640,China
Download: HTML   PDF(1858KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: In order to improve the on-target effect of CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9).At the same time, it can prove the application value of the yeast hybridization system in the study of off-target effect. Methods: Based on the activase gene-edited rice strains previously constructed in our laboratory, the T7 endonuclease I assay was firstly used to predict off-target rates in 30 gene-edited rice strains. Subsequently, the yeast hybrid system was further used to investigate the off-target rate. During this period, at first, standard sgRNA and truncated sgRNA of on-target gene were cloned into the CRISPR/Cas9 expression vector pDW3769 to be recombinant vectors pHZ2 and pHZ4, and then those vectors were transfered into YPH499 yeast haploids to be the recombinant yeast YpHZ2 and YpHZ4. Seven off-target sequences A, B, C, D, E, F, G derived from off-target site prediction and on-target sequence were selected and cloned into the high copy vector pDW3133 and the low copy vector pDW3134, both of which contained the reporter genemCherry. The corresponding high copy recombination vectors were pHZ5, pHZ7, pHZ9, pHZ11, pHZ13, pHZ15, pHZ17 and pHZ19 and the corresponding low copy recombination vectors were pHZ6, pHZ8, pHZ10, pHZ12, pHZ14, pHZ16, pHZ18 and pHZ20, and all of them were respectively transformed into YPH500 yeast haploids to be recombinant yeast YpHZ5-20. Subsequently, recombinant yeast YpHZ2 and YpHZ4 individually hybridized with recombinant yeast YpHZ5-20, colonies of diploid yeast were picked and the fluorescence values were examined at various time periods, and at last off-target rate on the basis of fluorescence values was predicted. Results: The significant and stable fluorescence value was at 144-192 h, and off-target sgRNA sequences which have higher homology to the targeted sgRNA became more likely to be edited by CRIPSR/Cas9, too. However, truncated sgRNA can reduce the off-target rates compared with standard sgRNA. The result of off-target detection according to rice plants showed about 20%, and the off-target detection based on yeast hybridization was about 20%-28%. Conclusions: The fluorescence values are most significant and stable during the stationary phase in batch culture of yeast and directly proportional to the copies of the vector, and sgRNA sequences and structure can affect and targeting of CRISPR/Cas9. The prediction results of off-target rate were similar between the two methods so that the yeast hybrid platform can be proved to be a highly useful method in evaluating the off-target rate of the CRISPR/Cas9 system and investigating factors affecting the off-target rate.



Key wordsOff-target effect      Yeast two-hybrid      CRISPR/Cas9 system     
Received: 06 January 2021      Published: 06 July 2021
ZTFLH:  Q812  
Corresponding Authors: Hui ZHAO     E-mail: totom2008@scau.edu.cn
Cite this article:

BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System. China Biotechnology, 2021, 41(6): 27-37.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2101011     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I6/27

引物名称 引物序列
AEP1722 CTACTATATCTTGTCTGCATTTTCTC
AEP1701 CCATGAATGTCACATGTGAATTAG
AEP1724 AGATCGATAGGTTGCTGATTAAAGTTAG
AEP1658 CATCCGATCCTCCTCAACTCCGATG
AEP976 TGCTCTACTACTGTTCCTGGCTAC
AEP1236 CGCAGGTGTCTGACCGCGACTTTG
Table 1 Primer sequence information
DNA模板 阴性对照
/μL
阳性对照
/μL
实验组
/μL
T7实验
对照/μL
Wt 7 - 3.5 -
plw6/plw10 - - 3.5 -
pDW2683 - 3.5 -
pDJ67 - 3.5 -
10×T7E1 缓冲液 2 2 2 2
ddH2O 10.8 10.8 10.8 10.8
Table 2 Sample information of T7E1 assay
命名 脱靶位点序列 PAM 引物 片段长度 /bp
靶序列 GGGCAAGGAGCACAGCAAGCAGG AGG AEP1722/1701 590
A GCGGAAGGAGCACAGCAAGCAGG AGG AEp2331/2332 1 300
B GCTGGAGGAGCAGAGCAAGCCGG CGG AEp2333/2334 550
C GCTAGAGGAGCCCAGCAAGCCGG CGG AEp2335/2336 850
D GGACGACGAGCAGAGCAAGCGGG GGG AEp2337/2338 1 050
E GCGGAAGGAGGACAGGAAGCTGG TGG AEp2339/2340 600
F GAGCCAGCAGCAGAGCAAGCCGG CGG AEp2341/2342 880
G GCTCACGGCGCACATCAAGCGGG GGG AEp2343/2344 660
Table 3 Off-target sequence details
序列信息 名称
standard gRNA 5'-gatcGGGCAAGGAGCACAGCAAGC-3' Oligo79
5'-aaacGCTTGCTGTGCTCCTTGCCC-3' Oligo80
truncated gRNA 5'-gatcGCAAGGAGCACAGCAAGC-3' Oligo81
5'-aaacGCTTGCTGTGCTCCTTGC-3' Oligo82
Table 4 Table sgRNA sequence information table
脱靶
位点
序列
名称
引物序列
A
Oligo83
Oligo84
5'- gatcGCGGAAGGAGCACAGCAAGCAGG-3'
5'- tcgaCCTGCTTGCTGTGCTCCTTCCGC-3'
B
Oligo85
Oligo86
5'- gatcGCTGGAGGAGCAGAGCAAGCCGG-3'
5'- tcgaCCGGCTTGCTCTGCTCCTCCAGC-3'
C
Oligo87
Oligo88
5'- gatcGCTAGAGGAGCCCAGCAAGCCGG-3'
5'- tcgaCCGGCTTGCTGGGCTCCTCTAGC-3'
D Oligo89
Oligo90
5'- gatcGGACGACGAGCAGAGCAAGCGGG-3'
5'- tcgaCCCGCTTGCTCTGCTCGTCGTCC-3'
E Oligo91
Oligo92
5'- gatcGCGGAAGGAGGACAGGAAGCTGG-3'
5'- tcgaCCAGCTTCCTGTCCTCCTTCCGC-3'
F Oligo93
Oligo94
5'- gatcGCTCACGGCGCACATCAAGCGGG-3'
5'- tcgaCCCGCTTGATGTGCGCCGTGAGC-3'
G Oligo95
Oligo96
5'- gatcGAGGGAGGAGGACGGCAAGCGGG-3'
5'- tcgaCCCGCTTGCCGTCCTCCTCCCTC-3'
Table 5 Synthesis information of miss sequence
重组质粒 序列 载体
pHZ2 standard gRNA(oligo79+80) pDW3766
pHZ4 truncated gRNA(oligo81+82) pDW3766
pHZ5 Off 1(oligo83+84) pDW3133
pHZ6 Off 1(oligo83+84) pDW3134
pHZ7 Off 2(oligo85+86) pDW3133
pHZ8 Off 2(oligo85+86) pDW3134
pHZ9 Off 3(oligo87+88) pDW3133
pHZ10 Off 3(oligo87+88) pDW3134
pHZ11 Off 4(oligo89+90) pDW3133
pHZ12 Off 4(oligo89+90) pDW3134
pHZ13 Off 5(oligo91+92) pDW3133
pHZ14 Off 5(oligo91+92) pDW3134
pHZ15 Off 6(oligo93+94) pDW3133
pHZ16 Off 6(oligo93+94) pDW3134
pHZ17 Off 7(oligo95+96) pDW3133
pHZ18 Off 7(oligo95+96) pDW3134
pHZ19 On target control(oligo97+98) pDW3133
pHZ20 On target control(oligo97+98) pDW3134
Table 6 Recombinant plasmid number table
酵母菌株
(YpH500)
杂交株YpHZ2
(YpH499)
杂交株YpHZ4
(YpH499)
YpHZ5 YpHZ2+5 YpHZ4+5
YpHZ6 YpHZ2+6 YpHZ4+6
YpHZ7 YpHZ2+7 YpHZ4+7
YpHZ8 YpHZ2+8 YpHZ4+8
YpHZ9 YpHZ2+9 YpHZ4+9
YpHZ10 YpHZ2+10 YpHZ4+10
YpHZ11 YpHZ2+11 YpHZ4+11
YpHZ12 YpHZ2+12 YpHZ4+12
YpHZ13 YpHZ2+13 YpHZ4+13
YpHZ14 YpHZ2+14 YpHZ4+14
YpHZ15 YpHZ2+15 YpHZ4+15
YpHZ16 YpHZ2+16 YpHZ4+16
YpHZ17 YpHZ2+17 YpHZ4+17
YpHZ18 YpHZ2+18 YpHZ4+18
YpHZ19 YpHZ2+19 YpHZ4+19
YpHZ20 YpHZ2+20 YpHZ4+20
YpDW3134 YpHZ2+3134 YpHZ4+3134
Table 7 Hybrid yeast strain number
Fig.1 T7E1 was used to analyze the gene editing of rice plants Wt: Wild type control; M: DNA marker 2000; Lane 1-12: plw6(1),plw6(2),plw7(1),plw7(2),plw8(1),plw8(2),plw10(1),plw10(2),plw10(3),plw10(4),plw12(1),plw12(2)
Fig.2 The T7E1 map of the plant was detected (a)Lane 1-6 were respective plw6-(1-6) (b)Lane 7-15 were respective plw6-(7-15) (c)Lane 16-23 were respective plw10-(1-10) (d)Lane 24-28 were respective plw10-(11-13) M: DNA marker 2000; Wt: Wild type control
Fig. 3 Identification of recombinant vectors by restriction enzyme digestion (a)Electrophoretic map of recombinant vectors pHZ2, pHZ4, M is marker 12 000 (b)Electrophoretic map of recombinant vectors pHZ5-11,M is marker 10 000
Fig.4 The positive control groups were YpHZ2+19 and YpHZ2+20 at 120-192 h (a)The fluorescence of positive control YpHZ2 + 19 in 120-192 h (b)The fluorescence of positive control YpHZ2+20 in 120 -192 h (c)The fluorescence values of positive control YpHZ2 + 19 and YpHZ2 + 20 in 120 -192 h
Fig. 5 Fluorescence of yeast YpHZ2+5 and YpHZ4+5 at 120 -192 h (a)The fluorescence data of yeast YpHZ 2 + 5 in 120 -192 h (b)The fluorescence data of yeast YpHZ 4 + 5 in 120-192 h (c)The fluorescence data of yeast YpHZ 2 + 5 and yphz4 + 5 in 120 -192 h
Fig.6 The fluorescence of YpHZ2/4+7 and negative control YpHZ2/4+3133 at 144 h
Fig.7 Hybridization fluorescence data of YpHZ2 withYpHZ5-20 and YpDW3134 (a)YpH2+(5-20) (b)YpH4+(5-20)
Fig.8 Off-target rates in YpHZ2+5 and YpHZ4+5
[1]   李国玲, 杨善欣, 吴珍芳, 等. 提高CRISPR/Cas9介导的动物基因组精确插入效率研究进展. 遗传, 2020, 42(7):641-656.
[1]   Li G L, Yang S X, Wu Z F, et al. Recent developments in enhancing the efficiency of CRISPR/Cas9-mediated knock-in in animals. Hereditas, 2020, 42(7):641-656.
[2]   Gaj T, Gersbach C A, Barbas C F III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7):397-405.
doi: 10.1016/j.tibtech.2013.04.004
[3]   Wah D A, Bitinaite J, Schildkraut I, et al. Structure of FokI has implications for DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(18):10564-10569.
[4]   Chandrasegaran S. Recent advances in the use of ZFN-mediated gene editing for human gene therapy. Cell & Gene Therapy Insights, 2017, 3(1):33-41.
[5]   方锐, 畅飞, 孙照霖, 等. CRISPR/Cas9介导的基因组定点编辑技术. 生物化学与生物物理进展, 2013, 40(8):691-702.
[5]   Fang R, Chang F, Sun Z L, et al. New method of genome editing derived from CRISPR/Cas9. Progress in Biochemistry and Biophysics, 2013, 40(8):691-702.
[6]   Hatada I, Horii T. Genome editing: a breakthrough in life science and medicine. Endocrine Journal, 2016, 63(2):105-110.
doi: 10.1507/endocrj.EJ15-0716 pmid: 26698412
[7]   肖安, 胡莹莹, 王唯晔, 等. 人工锌指核酸酶介导的基因组定点修饰技术. 遗传, 2011, 33(7):3-21.
[7]   Xiao A, Hu Y Y, Wang W Y, et al. Progress in zinc finger nuclease engineering for targeted genome modification. Hereditas, 2011, 33(7):3-21.
[8]   唐宇, 李丽莎, 林峻. TALENs技术的研究进展及其应用前景. 生物工程学报, 2015, 31(7):1024-1038.
[8]   Tang Y, Li L S, Lin J. Advances in transcription activator-like effector nucleases. Chinese Journal of Biotechnology, 2015, 31(7):1024-1038.
[9]   Xiao A, Hu Y Y, Wang W Y, et al. Progress in zinc finger nuclease engineering for targeted genome modification. Hereditas, 2011, 33(7):665-683.
[10]   周阳, 袁少飞, 蒋廷亚, 等. 基因组靶向修饰技术研究进展. 生物学杂志, 2015, 32(5):70-75.
[10]   Zhou Y, Yuan S F, Jiang T Y, et al. Research progress on the targeted genome modification. Journal of Biology, 2015, 32(5):70-75.
[11]   Vriend L E M, Prakash R, Chen C C, et al. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks. Nucleic Acids Research, 2016, 44(11):5204-5217.
doi: 10.1093/nar/gkw179
[12]   Islam W. CRISPR-Cas9; an efficient tool for precise plant genome editing. Molecular and Cellular Probes, 2018, 39:47-52.
doi: 10.1016/j.mcp.2018.03.006
[13]   Hsu P D, Scott D A, Weinstein J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013, 31(9):827-832.
doi: 10.1038/nbt.2647
[14]   刘耀, 熊莹喆, 蔡镇泽, 等. 基因编辑技术的发展与挑战. 生物工程学报, 2019, 35(8):1401-1410.
[14]   Liu Y, Xiong Y Z, Cai Z Z, et al. Development and challenges of gene editing technology. Chinese Journal of Biotechnology, 2019, 35(8):1401-1410.
[15]   Lin Y N, Cradick T J, Brown M T, et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Research, 2014, 42(11):7473-7485.
doi: 10.1093/nar/gku402
[16]   Singh K, Evens H, Nair N, et al. Efficient in vivo liver-directed gene editing using CRISPR/Cas9. Molecular Therapy, 2018, 26(5):1241-1254.
doi: 10.1016/j.ymthe.2018.02.023
[17]   Meng X B, Hu X X, Liu Q, et al. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Science China Life Sciences, 2018, 61(1):122-125.
doi: 10.1007/s11427-017-9247-9
[18]   Chen J S, Dagdas Y S, Kleinstiver B P, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature, 2017, 550(7676):407-410.
doi: 10.1038/nature24268
[19]   Brazelton V A, Zarecor S, Wright D A, et al. A quick guide to CRISPR sgRNA design tools. GM Crops & Food, 2015, 6(4):266-276.
[20]   Schiestl R H, Manivasakam P, Woods R A, et al. Introducing DNA into yeast by transformation. Methods, 1993, 5(2):79-85.
doi: 10.1006/meth.1993.1011
[21]   Doench J G, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34(2):184-191.
doi: 10.1038/nbt.3437 pmid: 26780180
[22]   Ren X J, Yang Z H, Xu J, et al. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Reports, 2014, 9(3):1151-1162.
doi: 10.1016/j.celrep.2014.09.044
[1] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[2] WANG Dan-dan, CHEN Tian, XU Liang-guo. Screening of VISA Interacting Proteins by Yeast Two-hybrid System[J]. China Biotechnology, 2017, 37(6): 63-69.
[3] LIN Ying, LI Pu, SHAN Jing-xuan, CHEN Xiao-jing, SHI Hui-li, HUO Ke-ke. RIOK3 Promotes the Cleavage-activation of Caspase-10 on PAK2[J]. China Biotechnology, 2012, 32(08): 1-8.
[4] TANG De-ping, MAO Ai-hong, LIAO Shi-qi, XUE Lin-gui, ZHANG Bing-lin. The Types of siRNA Off-target Effects and the Strategies for Mitigation[J]. China Biotechnology, 2012, 32(07): 113-119.
[5] LI Yao-feng, ZHANG Nan-yang, ZHAO Yong-ju. Methods of Construction and Identification of the Bait Vector in Yeast Two-Hybrid System[J]. China Biotechnology, 2012, 32(02): 123-127.
[6] . Preliminary Research on the Interaction between SSX2IP and 14-3-3η[J]. China Biotechnology, 2010, 30(07): 0-0.
[7] Liang Wei-Hong . Identification of the Genetic Interaction between OsMY1 and OsRacD from Oryza sativa, L[J]. China Biotechnology, 2008, 28(7): 63-66.