Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (12): 49-57    DOI: 10.13523/j.cb.2008119
    
Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize
LEI Hai-ying1,ZHAO Qing-song1,BAI Feng-lin1,SONG Hui-fang1,WANG Zhi-jun2,**()
1 Faculty of Biology Sciences and Technology, Changzhi University, Changzhi 046011, China
2 Department of Chemistry, Changzhi University, Changzhi 046011, China
Download: HTML   PDF(15406KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To construct a ZmCen gene expressing vector using CRISPR/Cas9 system and analyze its effect on growth and development in maize after transformation. Methods: A sgRNA in the first exon of ZmCen gene was designed targeting it. The sgRNA was inserted into the pOMS01-Cas9-ZmCen-sgRNA vector, and its transgenic lines B104 were obtained via Agrobacterium-mediated transformation, subcultured, induced and differentiated into seedlings. The T0 and T1 generations genomic DNA was amplified and analyzed, and the plants were phenotype comparison screening. Results: The ZmCen expressing vector was successfully constructed. The genomic DNA of T0 and T1 generations was detected by PCR and sequenced. The mutagenesis frequency for ZmCen was 20.13% and 64.52% in T0 and T1 transgenic lines, respectively. The frequency of homozygous deletion mutation was 5% in T1 transgenic lines. Sequence analysis showed that base substitutions, insertions, or deletions occurred near the editing target of the ZmCen gene. Compared with the wild-type phenotype, it was found that the T1 generation plants of ZmCen mutant showed incomplete male inflorescence phenotype, while the male inflorescence of homozygous mutant plants was sterility. Conclusion: The ZmCen gene was succeed editing by CRISPR/Cas9 technical in maize, and the successful construction of ZmCen mutants lays a foundation for the related-genes study of maize male organ development.



Key wordsCRISPR/Cas9      Maize      ZmCen male inflorescence     
Received: 11 August 2020      Published: 14 January 2021
ZTFLH:  Q789  
Corresponding Authors: Zhi-jun WANG     E-mail: czxywzj@163.com
Cite this article:

LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize. China Biotechnology, 2020, 40(12): 49-57.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2008119     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I12/49

引物名称 引物(5'→3') 用途
T-F GGCGAGGCCTAGGGCTCGCCCTCATGG 合成sgRNA
T-R CCATGAGGGCGAGCCCTAGGCCTCAAA
pSgA-T GACCATAGCACAAGACAGGCGT 中间载体检测
pOSCas9-F GATGGGTTTTTATGATTAGAGTCC 表达载体检测
pOSCas9-R GGCTCGTATGTTGTGTGG
ZmCenT-F CAAGAAAATATCGGTCCATACGC 基因编辑验证
ZmCenT-R TGAGGTAAGGCAGGCATAACAA
ZmCenT-S ATCATTAGGTTCAGTTTTGTTTTT 基因测序验证测定
Table 1 The PCR primers sequences used in this study
药品 用量
pOSCas9/ Asc I + Xba I 30ng
pSgA-T/Asc I + Xba I 10ng
T4 ligase buffer 1μl
T4 ligase 0.5μl
ddH2O 至10μl
Table 2 Expression vector construction system
Fig.1 Schematic diagram of ZmCen gene structure and the result of pOMS01-Cas9-ZmCen-gRNArecombination expression vector (a) The gene structure of ZmCen and design of the sgRNA . The target site of ZmCen-sgRNA in exon 1. The PAM motif is the TGG,which is located in the end of nucleotide sequence LB: Vector left border; RB: Vector right border; Bar: The resistance gene of herbicide; Ubi promoter: Ubiquitin promoter; OsU3 promoter: Rice U3 promoter; 35S promoter: Cauliflower mosaic virus (CaMV) 35S promoter; Nos terminator: Agrobacterium tumefaciens nopaline synthase gene (Nos) terminator; gRNA: Guide RNA; Cas9: The gene of Cas9 (b)Identification of the recombinant expression vector pOMS01-Cas9-ZmCen-gRNA M: Marker; 1 and 2: The PCR result of the positive clones
Fig.2 Partial T0 generation test strips and the agarose gel electrophoresis results of the PCR amplification (a) The result of test strips +: Positive; -: Negative (b) Agarose gel electrophoresis of the editing target sequences amplification products M: Standard molecular weight maker; 1-17: T0 transgenic lines
Fig.3 Partial comparison result of the editing target sequences between T0 and T1 transgenic plants
Target gene Number of sgRNA plants with different mutation types Number of
plants tested
Percent of
mutation
Insert Delete Change
T0 generation 5 (3.24%) 9 (5.84%) 17 (11.04%) 154 20.13%
T1 generation 10 (16.13%) 11 (17.74%) 19 (30.64%) 62 64.52%
Tab.3 sgRNA gene editing mutation type detection
Fig.4 The PCR agarose gel electrophoresis result of Cas9 gene in T0 and T1 transgenic generations (a) The result of T0 transgenic generations (b) The result of T1 transgenic generations +:Positive control; -:Negative control;M: Standard molecular weight maker
Fig.5 Comparison of male inflorescence phenotype, anther and pollens between wild type and T1 mutation lines (a), (d),(f)and(h) were wild type; (b), (c), (e), (g) and (i) were T1 mutation lines
[1]   Shen B, Zhang J, Wu H Y, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res, 2013,23(5):720-723.
pmid: 23545779
[2]   Shan Q W, Wang Y P, Li J, et al. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 2014,9(10):2395-2410.
doi: 10.1038/nprot.2014.157
[3]   Cho S W, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013,31(3):230-232.
doi: 10.1038/nbt.2507
[4]   Fu Y, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013,31(9):822-826.
doi: 10.1038/nbt.2623
[5]   Feng Z Y, Zhang B T, Ding W N, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 2013,23(10):1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582
[6]   Char S N, Neelakandan A K, Nahampun H, et al. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize, Plant Biotechnology Journal, 2017,15(2):257-268.
doi: 10.1111/pbi.12611 pmid: 27510362
[7]   Jiang W Y, Bikard D, Cox D, et al. RNA guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013,31(3):233-239.
doi: 10.1038/nbt.2508 pmid: 23360965
[8]   Coling D E, Salisbury J L. Characterization of the calcium-binding contractile protein centrin from Tetraselmis striata (Pleurastrophyceae). Journal Prolozool, 1992,39(3):385-391.
[9]   Helmut P. Evolutionary cell biology of proteins from protists to humans and plants. Jounal Eukaryote Microbiology, 2018,65(2):255-289.
[10]   Schiebel E, Bornens M. In search of function for centrins. Trends Cell Biology, 1995,5(5):197-201.
[11]   Molinier J, Ramos C, Fritsch O, et al. CENTRIN2 modulates homologous recombination and nucleotide excision repair in Arabidopsis. Plant Cell, 2004,16(6):1633-4163.
doi: 10.1105/tpc.021378 pmid: 15155891
[12]   Juliette A, Philippe N, Anna C, et al. Arabidopsis TONNEAU1 proteins are essential for preprophase mand formation and interact with Centrin. Plant Cell, 2008,20(8):2146-2159.
doi: 10.1105/tpc.107.056812 pmid: 18757558
[13]   Klink V P, Wolniak S M. Centrin is necessary for the formation of the motile apparatus in spermatids of Marsilea. Molecular Biology of the Cell, 2001,12(3):761-776.
doi: 10.1091/mbc.12.3.761 pmid: 11251086
[14]   Salisbury J L. Centrin, centrosomes, and mitotic spindle poles. Current Opinion in Cell Biology, 1995,7(1):39-45.
pmid: 7755988
[15]   Lutz W, Lingle W L, McCormick D, et al. Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. The Journal of Biological Chemistry, 2001,276(23):20774-20780.
doi: 10.1074/jbc.M101324200 pmid: 11279195
[16]   雷海英, 白凤麟, 段永红, 等. 玉米酵母双杂交cDNA文库的构建及ZmCEN互作蛋白的筛选. 西北植物学报. 2018,38(4):598-606.
[16]   Lei H Y, Bai F L, Duan Y H, et al. Construction of yeast two-hybrid cDNA library and screening of interaction proteins of ZmCen in maize. Acta Botanica Boreali-Occidentalia Sinica. 2018,38(4):598-606.
[17]   Carroll D. Genome engineering with zinc-finger nucleases. Genetics, 2011,188(4):773-782.
doi: 10.1534/genetics.111.131433 pmid: 21828278
[18]   Joung J K, Sander J D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 2012,14(1):49-55.
doi: 10.1038/nrm3486 pmid: 23169466
[19]   Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121), 819-823.
pmid: 23287718
[20]   Svitashev S, Schwartz C, Lenderts B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016,16(7):1-7.
[21]   Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 2015,33(1):41-52.
doi: 10.1016/j.biotechadv.2014.12.006 pmid: 25536441
[22]   刘纪麟. 玉米育种学. 第2版. 北京: 中国农业出版社, 2001: 34-35.
[22]   Liu J L. LMaize Breeding. 2nd ed. Beijing: China Agriculture Press, 2001: 34-35.
[23]   Liang L, Flury S, Kalck V, et al. CENTRIN2 interacts with the Arabidopsis homolog of the human XPC protein (AtRAD4) and contributes to efficient synthesis-dependent repair of bulky DNA lesions. Plant Molecular Biology, 2006,61(1-2):345-356.
doi: 10.1007/s11103-006-0016-9 pmid: 16786311
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[3] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[4] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[5] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[6] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[7] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[12] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[13] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[14] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[15] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.