Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (5): 35-44    DOI: 10.13523/j.cb.2103001
    
CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain
WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming()
Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
Download: HTML   PDF(2320KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Pectinase preparations have been widely used in China. However, efficient and specific pectinases are still lacking in the market. Producing a single-component pectinase using modified Aspergillus niger by genetic engineering technology has become an effective solution to meet the growing industrial demand of pectinase. Constructing an efficient CRISPR-Cas9 technology can provide an efficient genome editing tool for the construction of Aspergillus niger chassis strain with high yield single pectinase. First, the pyrG gene on the genome of pectinase-producing Aspergillus niger was knocked out to construct the uracil auxotrophic strain AnΔpyrG, and the Cas9 expression cassette and pyrG expression cassette were integrated precisely at the pyrG site of the AnΔpyrG strain to construct AnCas9 strain constitutively expressing the Cas9 gene. Then, the pLM2-sgRNA plasmid which contained the gpdA promoter, hammerhead ribozyme, and HDV ribozymes for the efficient expression and maturation of sgRNA was constructed. And finally, the CRISPR-Cas9 gene editing system is successfully established. The 4978020 and the 4983861 gene were used to detect the gene editing efficiency of the constructed CRISPR-Cas9 system, and the phenotypic changes and enzyme production changes of the 4978020 gene function deletion strain were detected. The results showed that the pectinase gene editing efficiency is more than 50%, the phenotype and pectinase activity of the strain AnΔ4978020 had no significant changes compared with the original strain. An efficiency CRISPR-Cas9 system was successfully constructed in Aspergillus niger producing pectinase, and losing of the 4978020 gene function did not affect the phenotype of the strain, which laid the foundation for the construction of high yield single pectinase Aspergillus niger chassis strain.



Key wordsCRISPR/Cas9 technology      Pectinase      Gene edition      Aspergillus niger     
Received: 01 March 2021      Published: 01 June 2021
ZTFLH:  Q812  
Corresponding Authors: Ming LI     E-mail: liming09@tust.edu.cn
Cite this article:

WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain. China Biotechnology, 2021, 41(5): 35-44.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2103001     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I5/35

Primer name Primer sequence (5'-3') Restriction sites
KOpyrG-Left-F GGGGTACCAGTGTGATGACTTCACCATGGAGGT Kpn
KOpyrG-Left-R1 CATTGAACATTGTCCTTGGTACGGTATTGATCCTGCAGGCTACT
KOpyrG-Right-F1 GCCTGCAGGATCAATACCGTACCAAGGACAATGTTCAATGTCGAC
KOpyrG-Right- R GGAATTCTCTCCGGATGTTGAATGGCAAC EcoRⅠ
SgGpdAF GAAGATCTGCGTAAGCTCCCTAATTGGC Bgl
SgTrpR AGGCGCGCCGAAGGCGCGCCA Asc
4978020F1 AAGCTCGTCCGTCTCCGAGTTCGCTAAGAGTTTTAGAGCTAGAAATAGCAAGTTAAAAT
4978020F2 GAGACGCTGATGAGTCCGTGAGGACGAAACGAGTAAGCTCGTCCGTCTCCGAGTTCG
4983861F1 AAGCTCGTCTAGCTTCTGCGCCACCTTCAGT
TTTAGAGCTAGAAATAGCAAGTTAAAAT
4983861F2 AAGCTACTGATGAGTCCGTGAGGACGAAACG
AGTAAGCTCGTCTAGCTTCTGCGCC
Table 1 Primers used in this work
Fig.1 The diagram of pyrG gene knockout in Aspergillus niger
Fig.2 Construction of AnCas9 strain
Fig.3 Construction of pLM2-sgRNA and sgRNA expression cassette (a) Construction of multiple sgRNA expression cassette (b) Construction of sgRNA expression cassette
Hygromycin B 5-FOA
Concentration
/(μg/mL)
Growth Concentration
/(mg/mL)
Growth
40 ++++ 0.5 ++++
80 +++ 1 +++
120 ++ 1.5 ++
160 - 2 -
200 - 2.5 -
Table 2 The minimum inhibitory concentration of hygromycin B and 5-fluoroorotic acid
Fig.4 Nucleic acid electrophoresis and plasmids mapping (a) pPZP-KOpyrG verification by digestion 1:DNA marker; 2:pPZP-KOpyrG (b) Verification of AnΔpyrG strain 1: DNA marker; 2 , 3: AnΔpyrG (c) PCR verification of AnCas9 strain 1:DNA marker; 2:AnCas9 (d) pLM1Cas9 plasmid (e) pLM2-sgRNA plasmid
Fig.5 Target sequences alignment of 4978020 and 4983861 genes transformants (a) 4978020 sequence alignment (b) 4983861 sequence alignment
Fig.6 Phenotype of AnΔ4978020 and WT strains (a) Colony morphology (b) Spore morphology (c) Growth currve
Fig.7 Pectinase activities comparation of AnΔ4978020 and WT strains
[1]   Mohnen D. Pectin structure and biosynthesis. Current Opinion in Plant Biology, 2008,11(3):266-277.
doi: 10.1016/j.pbi.2008.03.006
[2]   Lara-Márquez A, Zavala-Páramo M G, López-Romer E, et al. Biotechnological potential of pectinolytic complexes of fungi. Biotechnology Letters, 2011,33(5):859-868.
doi: 10.1007/s10529-011-0520-0 pmid: 21246254
[3]   Willats W G T, McCartney L, Mackie W, et al. Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology, 2001,47(1-2):9-27.
doi: 10.1023/A:1010662911148
[4]   傅海, 赵佳, 李伟, 等. 果胶酶研究进展及应用. 生物化工, 2020,6(5):148-150,153.
[4]   Fu H, Zhao J, Li W, et al. Research progress and application of pectinase. Biological Chemical Engineering, 2020,6(5):148-150,153.
[5]   Alkorta I, Garbisu C, Llama M J, et al. Industrial applications of pectic enzymes: a review. Process Biochemistry, 1998,33(1):21-28.
doi: 10.1016/S0032-9592(97)00046-0
[6]   Mieszczakowska-Frᶏc M, Markowski J, Zbrzeźniak J, et al. Impact of enzyme on quality of blackcurrant and plum juices. LWT - Food Science and Technology, 2012,49(2):251-256.
doi: 10.1016/j.lwt.2011.12.034
[7]   Wang W D, Xu S Y, Jin M K. Effects of different maceration enzymes on yield, clarity and anthocyanin and other polyphenol contents in blackberry juice. International Journal of Food Science & Technology, 2009,44(12):2342-2349.
[8]   Kohli P, Gupta R. Alkaline pectinases: a review. Biocatalysis and Agricultural Biotechnology, 2015,4(3):279-285.
doi: 10.1016/j.bcab.2015.07.001
[9]   Saoudi B, Habbeche A, Kerouaz B, et al. Purification and characterization of a new thermoalkaliphilic pectate lyase from Actinomadura keratinilytica Cpt20. Process Biochemistry, 2015,50(12):2259-2266.
doi: 10.1016/j.procbio.2015.10.006
[10]   Hoondal G, Tiwari R, Tewari R, et al. Microbial alkaline pectinases and their industrial applications: a review. Applied Microbiology and Biotechnology, 2002,59(4-5):409-418.
doi: 10.1007/s00253-002-1061-1
[11]   Wang X W, Lu Z H, Xu T, et al. Improving the specific activity and thermo-stability of alkaline pectate lyase from Bacillus subtilis 168 for bioscouring. Biochemical Engineering Journal, 2018,129:74-83.
doi: 10.1016/j.bej.2017.11.001
[12]   Barman S, Sit N, Badwaik L S, et al. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. Journal of Food Science and Technology, 2015,52(6):3579-3589.
[13]   Mrudula S, Anitharaj R. Pectinase production in solid state fermentation by Aspergillus niger using orange peel as substrate. 2011
[14]   Ann Ran F, Hsu P D, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013,8(11):2281-2308.
doi: 10.1038/nprot.2013.143 pmid: 24157548
[15]   Schuster M, Kahmann R. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genetics and Biology, 2019,130:43-53.
doi: 10.1016/j.fgb.2019.04.016
[16]   Nødvig C S, Nielsen J B, Kogle M E, et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One, 2015,10(7):e0133085.
doi: 10.1371/journal.pone.0133085
[17]   Pohl C, Kiel J A K W, Driessen A J M, et al. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synthetic Biology, 2016,5(7):754-764.
doi: 10.1021/acssynbio.6b00082 pmid: 27072635
[18]   Platt R J. CRISPR tool modifies genes precisely by copying RNA into the genome. Nature, 2019,576(7785):48-49.
doi: 10.1038/d41586-019-03392-9
[19]   Shi T Q, Gao J, Wang W J, et al. CRISPR/Cas9-based genome editing in the filamentous fungus Fusarium fujikuroi and its application in strain engineering for gibberellic acid production. ACS Synthetic Biology, 2019,8(2):445-454.
doi: 10.1021/acssynbio.8b00478
[20]   Yang Y J, Singh R P, Lan X, et al. Genome editing in model strain Myxococcus xanthus DK1622 by a site-specific cre/loxP recombination system. Biomolecules, 2018,8(4):E137.
[21]   李红花, 刘钢. CRISPR/Cas9在丝状真菌基因组编辑中的应用. 遗传, 2017,39(5):355-367.
[21]   Li H H, Liu G. The application of CRISPR/Cas9 in genome editing of filamentous fungi. Hereditas, 2017,39(5):355-367.
[22]   Michielse C B, Hooykaas P J J, van den Hondel C A M J J, et al. Agrobacterium -mediated transformation of the filamentous fungus Aspergillus awamori. Nature Protocols, 2008,3(10):1671-1678.
doi: 10.1038/nprot.2008.154 pmid: 18833205
[23]   Sandri I G, Fontana R C, Moura da Silveira M. Influence of pH and temperature on the production of polygalacturonases by Aspergillus fumigatus. LWT - Food Science and Technology, 2015,61(2):430-436.
doi: 10.1016/j.lwt.2014.12.004
[24]   Michielse C B, Hooykaas P J J, Hondel C A M J J, et al. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 2005,48(1):1-17.
doi: 10.1007/s00294-005-0578-0
[25]   Weyda I, Yang L, Vang J, et al. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. Journal of Microbiological Methods, 2017,135:26-34.
doi: 10.1016/j.mimet.2017.01.015
[26]   Kamijo J, Sakai K, Suzuki H, et al. Identification and characterization of a thermostable pectate lyase from Aspergillus luchuensis var. saitoi. Food Chemistry, 2019,276:503-510.
doi: S0308-8146(18)31824-7 pmid: 30409626
[27]   Wang Q, Coleman J J. Progress and challenges: development and implementation of CRISPR/Cas9 technology in filamentous fungi. Computational and Structural Biotechnology Journal, 2019,17:761-769.
doi: 10.1016/j.csbj.2019.06.007
[1] DUAN Sheng-wen, LIU Zheng-chu, ZHENG Ke, FENG Xiang-yuan, CHENG Li-feng, ZHENG Xia. Technique for Exploring Pectinase Gene of Bast Fiber Degumming from Enrichment Liquid[J]. China Biotechnology, 2014, 34(1): 86-89.
[2] CHEN Li-Na, YING Xiang-Xian, XUE Qun, HONG Zhao. Properties and Applications of Alkaline Pectinases from Bacteria[J]. China Biotechnology, 2010, 30(04): 125-130.