Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (8): 66-73    DOI: 10.13523/j.cb.20190809
Orginal Article     
Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid
WANG Gang1,2,XIAO Yu1,LI Yi2,LIU Zhi-gang2,PEI Cheng-li2,WU Li-da2,LI Yan-li1,WANG Xi-qing1,ZHANG Ming-lei1,CHEN Guang1,3,**(),TONG Yi2,**()
1 College of Life Science, Jilin Agricultural University,Changchun 130118,China
2 Cofco Biochemical Co, LTD of Jilin, Changchun 130118,China
3 Key Laboratory for Straw Biology and Utilization of the Ministry of Education, Jilin Agricultural University,Changchun 130118,China
Download: HTML   PDF(1556KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To construct ldhL gene deletion strain in Lactobacillus delbrueckii subsp. bulgaricus.Bulgaria lactobacillus CICC21101 was employed as the original strain, amplified the upstream sequence ldhL1 and downstream sequence ldhL2 by PCR, obtained successfully ldhL gene deletion fragment which includes both upstream and downstream sequence, then connected to knockout plasmid pGhost4, electricity to Bulgaria lactobacillus CICC21101, screening at low temperature. The results indicated that the ldhL gene knocked out deficient mutant was obtained.By gene knockout, the yield of D-lactic acid decreased from 30.5g/L to 4.8g/L, the yield of L-lactic acid increased from 25.4g/L to 58.3g/L, and the optical purity increased from 54.56% to 90%. It was a foundation to study the detail functions of ldh in Lactobacillus delbrueckii subsp. bulgaricus,it will lay the foundation of constuction on D-lactic acid engineering bacteria.



Key wordsLactobacillus delbrueckii subsp.bulgaricus      L-lactate dehydrogenase      Homologous recombination      Knock out      pGhost4     
Received: 22 January 2019      Published: 18 September 2019
ZTFLH:  Q93  
Corresponding Authors: Guang CHEN,Yi TONG     E-mail: chg61@163.com;tongyi@cofco.com
Cite this article:

WANG Gang,XIAO Yu,LI Yi,LIU Zhi-gang,PEI Cheng-li,WU Li-da,LI Yan-li,WANG Xi-qing,ZHANG Ming-lei,CHEN Guang,TONG Yi. Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid. China Biotechnology, 2019, 39(8): 66-73.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190809     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I8/66

Fig.1 The Pyruvate metabolic pathway of Lactobacillus delbrueckii subsp. bulgaricus
Fig.2 Strategy employed in this study for the deletation of ldh gene based on red-recombinat technology
Fig.3 PCR confirmation of recombinant clone M:Marker DL2000;1-2:The PCR results of recombinant clone plasmid
Fig.4 The result of restriction endonuclease digestion M:Marker DL5000;1:Recombinant clone plasmid by restriction enzyme digestion
Fig.5 PCR confirmation of recombinant plasmid M: Marker DL5000;1-3: Recombinant expression plasmid
Fig.6 PCR confirmation of mutant strain M:Marker DL5000;1-2: Wide type strain; 3-4: Mutant strain
Fig.7 Growth curve of wild type and mutant strain
菌种 D-乳酸(g/L) L-乳酸(g/L) 光学纯度(%)
原始菌种 30.5 25.4 54.56
工程菌DS-L 4.8 58.3 92.25
Table 1 The effect of knock out ldb0094 on lactic acid production
Fig.8 Engineering bacteria determination of the gene expression results
[1]   Fukushima K, Sogo K, Miura S , et al. Production of D-lactic acid by bacterial fermentation of rice starch. Macromol Biosci, 2004,4(1):1021-1027.
[2]   Yanez R, Moldes A B, Alonso J L , et al. Production of D-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp.torquens. Biotechnol Lett, 2003,25(2):1161-1164.
[3]   Tashiro Y, Kaneko W, Sun Y , et al. Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp.lactis QU 41. Appl Microbiol Biotechnol, 2011,89(8):1741-1750.
[4]   Saez-lara M J, Gomez-llorente C, Plaza-diaz J , et al. The role of probiotic Lactic acid bacteria and Bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases:a systematic review of randomized human clinical trials. Biomed Research International, 2015,2015(1):1-15.
[5]   Hulston C J, Churnside A A, Venables M C . Probiotic supplementation prevents high-fat,overfeeding-induced insulin resistance in human subjects. British Journal of Nutrition, 2015,113(4):596-602.
[6]   Prtty A, Lehtonen L, Kalliomki M , et al. Probiotic Lactobacillus rhamnosus GG therapy and microbiological programming in infantile colic:a randomized,controlled trial. Pediatric Research, 2015,78(4):470-475.
[7]   Fong F L Y, shah N P, kirjavainen P , et al. Mechanism of action of probiotic bacteria on intestinal and systemic immunities and antigen-presenting cells. International Reviews of Immunology, 2016,35(3):179-188.
[8]   Prtty A, Kalliomki M, Wacklin P , et al. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood:a randomized trial. Pediatric Research, 2015,77(6):823-828.
[9]   Bastani P, Homayouni A, Norouzi-panahi L , et al. The mechanisms of immune system regulation by probiotics in immune-related diseases. Journal of Pharmacy and Nutrition Sciences, 2016,6(3):105-111.
[10]   谭文君 . 保加利亚乳杆菌代谢途径中关键基因的克隆与序列分析. 天津:天津大学, 2009: 67-72.
[10]   Tan W J . Cloning and sequence analysis of key genes in the metabolic pathway of Lactobacillus bulgaricus. Tianin:Tianin University, 2009: 67-72.
[11]   Wang L, Zhao B, Li F , et al. Highly efficient production of d-lactate by Sporolactobacillus sp.CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biotechnol, 2011,89(1):1009-1017.
[12]   Zheng L, Liu M, Sun J , et al. Sodium ions activated phosphofructokinase leading to enhanced d-lactic acid production by Sporolactobacillus inulinus using sodium hydroxide as a neutralizing agent. Appl Microbiol Biotechnol, 2017,101(9):3677-3687.
[13]   Silvia K, Norman K, Anja K , et al. Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol, 2016,17(10):9423-9437.
[14]   李剑 . lactobacillus sp.MD1菌株乳酸脱氢酶基因的克隆表达及L和D乳酸工程菌的构建. 天津:南开大学, 2004.
[14]   Li J . Clone and expression of lactate dehydrogenase gene in Lactobacillus sp.MD1 strain and construction of L-lactic acid and D-lactic acid engineering bacteria. Tianjin: Nankai University, 2004.
[15]   Kosaki M, Kawai K . Production of high optical purity D-lactic acid: US, 5466588, 1995-11-4[2019-07-31].
[16]   丁子建 . 芽孢乳杆菌发酵葡萄糖制备D-乳酸的研究. 南京: 南京工业大学, 2004: 35-38.
[16]   Ding Z J . Study on the production of d-lactic acid by lactobacillus from glucose. Nanjing: Nanjing University of Technology, 2004: 35-38.
[17]   李爽 . D-乳酸产生菌株的基因敲除. 天津: 天津大学, 2010: 78-82.
[17]   Li S . Gene knockout of d-lactic acid producing strain. Tianjin: Tianjin University, 2010: 78-82.
[18]   刘伟, 郑璞, 靳新娜 , 等. 阻断嗜乙酰乙酸棒杆菌乙酸合成途径对其在缺氧条件下产琥珀酸的影响. 中国生物工程杂志, 2014,34(9):48-55.
[18]   Liu W, Zheng P, Jin X N , et al. Effects of cutting off the acetic acid synthesis pathway of Rhodobacilus acetoacetate on succinic acid production under hypoxia. Chinese Journal of Biological Engineering, 2014,34(9):48-55.
[19]   李芬, 孙大庆, 张丽萍 , 等. 植物乳杆菌LY-78乳酸脱氢酶基因的生物信息学分析. 食品科学, 2017,38(8):102-106.
[19]   Li F, Sun D Q, Zhang L P , et al. Bioinformatics analysis of lactate dehydrogenase gene in lactobacillus Plantarum LY 78. Food Science, 2017,38(8):102-106.
[20]   许黎明, 成春燕, 吕军 , 等. 鼠李糖乳杆菌D-乳酸脱氢酶基因ldhD的敲除. 基因组学与应用生物学, 2016,35(6):1421-1427.
[20]   Xu L M, Cheng C Y, Lu J , et al. D-lactate dehydrogenase gene(LdhD) knockout in Lactobacillus rhamnosus. Genomics and Applied Biology, 2016,35(6):1421-1427.
[21]   Qiu Z, Gao Q, Bao J , et al. Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic l-lactic acid fermentation. Bioresource Technology, 2018,249(3):9-15.
[22]   谭辉, 何小维, 周艳 , 等. 羧甲基纤维素钠与聚乳酸共混体系的研究. 现代食品科技, 2011,27(4):393-396.
[22]   Tan H, He X W, Zhou Y , et al. Study on blend system of carboxymethyl cellulose sodium and poly (lactic acid). Modern Food Science and Technology, 2011,27(4):393-396.
[23]   Thapa L P, Lee S J, Park C , et al. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007. Enzyme and Microbial Technology, 2017,102(1):1-8.
[24]   Lee J W, In J H, Park J B , et al. Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production. Journal of Biotechnology, 2017,241(9):81-86.
[25]   Wang X Q, Wang G, Yu X , et al. Pretreatment of corn stover by solid acid for d-lactic acid fermentation. Bioresource Technology, 2017,23(9):490-495.
[26]   Freiding S, Gutsche K A, Ehrmann M A , et al. Genetic screening of Lactobacillus sakei and Lactobacillus curvatus strains for their peptidolytic system and amino acid metabolism,and comparison of their volatilomes in a model system. Systematic and Applied Microbiology, 2011,34(1):311-320.
[27]   Shao Y, Wang Z, Bao Q , et al. Application of propidium monoazide quantitative real-time PCR to quantify the viability of Lactobacillus delbrueckii ssp. bulgaricus. Journal of Dairy Science, 2016,99(6):9570-9580.
[28]   Jhan J K, Chang W F, Wang P M , et al. Production of fermented red beans with multiple bioactivities using co-cultures of Bacillus subtilis and Lactobacillus delbrueckii subsp. bulgaricus . LWT - Food Science and Technology, 2015,63(5):1281-1287.
[29]   Regueira A, González C R, Ofiteru I D , et al. Electron bifurcation mechanism and homoacetogenesis explain products yields in mixed culture anaerobic fermentations. Water Research, 2018,141(8):349-356.
[30]   Saini P, Beniwal A, Kokkiligadda A , et al. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochemistry, 2018,72(7):1-12.
[31]   Simair A A, Qureshi A S, Simair S P , et al. An integrated bioprocess for xylanase production from agriculture waste under open non-sterilized conditions: Biofabrication as fermentation tool. Journal of Cleaner Production, 2018,193(4):194-205.
[32]   Lu Z D, Lu M B, He F , et al. An economical approach for D-lactic acid production utilizing unpolished rice from aging paddy as major nutrient source. Bioresource Technology, 2009,100(6):2026-2031.
[33]   Okano K, Zhang Q, Shinkawa S , et al. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum strain. Applied and Environmental Microbiology, 2009,75(2):462-467.
[34]   Ahring B K, Traverso J J, Murali N , et al. Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochemical Engineering Journal, 2016,109(109):162-169.
[35]   Zhou S, Causey T B, Hasona A , et al. Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Applied & Environmental Microbiology, 2003,69(1):399-407.
[1] FAN Bin,CHEN Huan,SONG Wan-ying,CHEN Guang,WANG Gang. Advances in Lactic Acid Bacteria Gene Modification[J]. China Biotechnology, 2020, 40(6): 84-92.
[2] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[3] CHEN Jian-wu, REN Hong-yan, HUA Wen-jun, LIU Xi-mei, QI Shi-jin, ZHOU Li, OU Yang-yan, BI Yan-zhen, YANG Ye, ZHENG Xin-min. A Double Fluorescence Screening Strategy to Enhance the Efficiency of Gene Targeting[J]. China Biotechnology, 2017, 37(1): 58-63.
[4] GE Gao-shun, ZHANG Li-chao, ZHAO Xin, HU Xue-jun, LI Ya-jie. Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome[J]. China Biotechnology, 2014, 34(06): 68-74.
[5] XIE Ke, RAO Li-qun, LI Hong-wei, AN Xue-li, FANG Cai-chen, WAN Xiang-yuan. Research Progress of Genome Editing in Plants[J]. China Biotechnology, 2013, 33(6): 99-104.
[6] FAN Xiang-yu, XIE Jian-ping. Recombineering Based on Mycobacteriophage and Its Application[J]. China Biotechnology, 2012, 32(09): 101-106.
[7] . Studies on Gene Knocking Out of 3-Ketosteriod-1-Dehydrogenase in Mycobacterium neoaurum[J]. China Biotechnology, 2007, 27(5): 39-44.
[8] . Construction of α-hemolysin deletion mutation of SEB-producing Staphylococcus aureus[J]. China Biotechnology, 2007, 27(10): 48-52.
[9] . Disruption and Compensation of dnmV gene from Daunorubicin-producing strain Streptomyces coeruleorubidus SIPI-1482[J]. China Biotechnology, 2006, 26(07): 64-68.